116.1时间序列分析概述16.2数据准备16.3时间序列的图形化观察及检验16.4时间序列的预处理(重点)16.5简单回归分析法和趋势外推法(自学)16.6指数平滑法(重点)16.7ARIMA模型分析(重点)16.8季节调整法(重点)时间序列分析216.7ARIMA模型•16.7.1ARIMA模型的基本原理•16.7.2ARIMA模型的基本操作•16.7.3ARIMA模型实例分析3•ARIMA(自回归综合移动平均)是时间序列分析中最为常用的模型,也称之为Box-Jekins模型,或带差分的自回归移动平均模型。•ARIMA模型可以对含有季节成分的时间序列数据进行分析,它包含三个主要的参数—自回归阶数(p)、差分阶数(d)、移动平均阶数(q),一般模型的形式记为ARIMA(p,d,q)。416.7.1ARIMA模型的基本原理•处理非平衡的时间序列时,可以先建立一个包含趋势成分的模型,对由此初步模型得到的残差项,再使用ARIMA模型来拟合。1.差分2.ARIMA模型的分类3.建立ARIMA模型的一般步骤51.差分•差分是使序列平稳化的主要手段,常用的有一般性差分和季节差分两种。111,,,1;1.tttdttdttttdddttttTTtttTyBByyByyyByyydyyByyTyyy令为原始时间序列为延迟算子于是有:,则一阶差分为阶差分为如果还是一个周期为的序列,以表示季节差分算子,有:.这两种差分可以任意组合,直至差分后的序列为平稳的.平稳性可以通过检查差分后序列的自(偏)相关序列图来判断.62.ARIMA模型的分类•所谓ARIMA模型,就是对差分后的序列建立ARMA模型。根据参数个数的不同,ARIMA模型可分为如下几个基本类型:自回归(AR)模型;移动平均模型(MA)模型;自回归移动平均(ARMA)模型.71122....,.tttptptttkxxxxxtptxktpARpARppARp自回归模型的一般形式为:,体现了时间序列的某个时刻和它之前个时刻的相互联系.其中为白噪声序列,且和时刻之前的原始序列互不相关此式称为阶自回归模型,记为.模型的偏自相关函数在阶之后应为零,称其具有截尾性;模型的自相关函数不能在某一步之后为零,而是按指数或呈正弦波形式衰减称其具有拖尾性可根据.这些特征来识别该模型(1)AR模型81122...,.ttttqtqtkxxqMAqMAqqMAq移动平均模型的一般形式为:,其中为白噪音序列,说明时间序列能表示为若干个白噪声的加权平均和.此式称为阶移动平均模型,记为.模型的自相关函数在阶之后应为零,称其具有截尾性;模型的偏自相关函数不能在某一步之后为零截尾,而是按指数或呈正弦波形式衰减称其具有拖尾性(2)MA模型911221122.......,,.tttptptttqtqtkxxxxtxktARMApqARMApq自回归移动平均模型是自回归模型与移动平均模型的综合,其一般形式为:,其中为白噪音序列,且和时刻之前的原始序列互不相关记为.模型的自相关函数和偏自相关函数都具有拖尾性(3)ARMA模型10(4)ARIMA(p,d,q)模型,,,.ARIMApdqd当序列中存在趋势时,可通过某些阶数的差分处理使序列平稳化.这样的序列被称为是一种准平稳的序列,而相应的分析模型概括为其中表示平稳化过程中差分的阶数11(5)ARIMA(p,d,q)(P,D,Q)s模型,,,,,,sARIMApdqPDQPQDs当序列中同时存在趋势性和季节性的周期和趋势时,需要用模型.其中为季节性的自回归和移动平均阶数为季节差分的阶数,为季节周期.123.建立ARIMA模型的一般步骤通过差分或其它变换,使时间序列满足平稳性的要求;模型识别。主要是利用ACF、PACF和AIC等序列估计模型的大致类型,并给出几个初步模型以待进一步验证和完善。13参数估计和模型诊断。对识别阶段所给初步模型的参数进行估计及假设检验,并对模型的残差序列作诊断分析,以判断模型的合理性。预测。利用最优模型对序列的未来取值或走势进行预测。•第2和3步过程通常需要不断反馈、逐渐完善的过程。1416.7.2ARIMA模型的基本操作1)选择菜单分析预测创建模型在弹出窗口中方法中选择ARIMA。2)把待分析的变量选择到因变量框中。3)点击条件按钮,弹出模型参数设置框。4)若要对序列进行变换后再建模,可在转换框中选择变换方式。天津食品消费相关数据.sav15天津食品消费相关数据.sav16阶数设置当前周期转换函数若时间序列的均值为零,或者已对其应用了差分算子,建议模型中不包含常数模型参数设置17加法:只影响单个观测记录的异常值;移动水平:由数据的水平移动引起的异常值;创新的:由于噪声变动形成的异常值;瞬时的:对后续观测的影响程度,按指数水平衰减至0的异常值;季节性可加的:周期性的影响某些时刻的异常值;局部趋势:局部的线性异常值;可加的修补:表示多个连续出现的可加类型的异常值.异常值检测的设置不作处理自动检测用户指定185)在统计量、图表、选项等子对话框中,选择需要输出的统计量和图表。192016.7.3ARIMA模型的应用举例•利用1950年~1990年的天津食品消费数据,分析这段时间内的人均生活费用年收入的变化情况。1.首先绘制和观察它的序列图2.选择适当的ARIMA模型对其进行分析(ARIMA(1,1,2));3.提出改进模型ARIMA(0,1,2),再分析和预测天津食品消费相关数据.sav21具体操作1.首先绘制和观察它的序列图(自己练习)2.运用ARIMA(1,1,2)分析,具体操作见上一节,离群值不做处理;3.ARIMA(0,1,2)的操作与ARIMA(1,1,2)类似22ARIMA(1,1,2)模型描述和模型拟合23ARMA(1,1,2)模型残差序列的自相关和偏自相关图24ARIMA(1,1,2)模型的预测结果25112211221121......1,20.4130.3760.607tttptptttqtqtttttdARMAxxxxARMAxx原始序列取对数再一阶差分后的,模型:,具体模型为:.一阶自回归系数不是特别显著,可考虑去掉自回归部分模型参数输出26运用ARMA(0,1,2)模型的分析结果2711221122121......0,20.6400.695tttptptttqtqttttdARMAxxxxARMAx原始序列取对数再一阶差分后的,模型:,具体模型为:.ARMA(0,1,2)模型参数输出28ARMA(0,1,2)模型残差序列的自相关和偏自相关图29ARIMA(0,1,2)模型的预测结果3016.8季节分解模型•16.8.1季节分解法概述•16.8.2季节分解模型的基本操作•16.8.3季节分解模型实例分析31•时间序列是对某一统计指标,按照指定的时间间隔,搜集整理的一组统计数据.一个时间序列可能包含4种变动因素:长期趋势变动、季节性变动、循环性变动和不规则变动。但并不是所有的时间序列都会同时含有这4种变动因素。3216.8.1季节分解法概述•所谓季节分解,就是通过某些手段把时间序列中的4种变动趋势分解出来,并分别对其加以分析,再将分析结果综合起来组成的一个对原始时间序列的总模型。1.时间序列的4种成分2.季节分解模型的种类331.时间序列的4种成分长期趋势,记为T。表示序列取值随时间逐渐增加、减少或不变的长期发展趋势。例如:全球人口总数随着时间推移,正在逐步增长;人口死亡率出现长期向下的趋势。季节趋势,记为S。表示由于受到季节因素或某些习俗的影响,而出现的有规则的变化规律。如每天的交通流量在上下班时间出现高峰期,其余时间较为稳定。34循环趋势,记为C。表示序列取值沿着趋势线有如钟摆般循环变动的规律。例如:总体经济指标的循环就是由各个产业的循环组合而成。不规则趋势,记为R。表示把时间序列中的长期趋势、季节趋势和循环趋势都去除后余下的部分。不规则趋势是随机性的,它发生的原因有自然灾害、天气突变、人为的意外因素等。352.季节分解模型的种类加法模型。假设时间序列的由4种成分相加而成的;各成分之间彼此独立,没有交互影响。如果以Y表示某个时间序列,它的加法模型变为:Y=T+C+S+R。•按照加法模型的假设,季节因素、周期因素和不规则因素都围绕着长期趋势而上下波动,它们可以表现为正值或负值,反映了各自对时间序列的影响方式和程度。36乘法模型。假设时间序列的由4种成分相乘而成的;各成分之间存在着相互依赖的关系。如果以Y表示某个时间序列,它的乘法模型变为:Y=T×C×S×R。•按照乘法模型的假设,季节因素、周期因素和不规则因素也围绕着长期趋势而上下波动,但这种波动表现为一个大于或小于1的系数,反映了它们在长期趋势和基础上对原始序列的相对影响方式和程度。3716.8.2季节分解模型的基本操作1.数据和问题描述•利用季节分解模型,对某城市5年内每个季度的游客数量进行分析,以了解其旅游市场的发展变化规律。某市游客量时序数据.sav38•查看和设定日期变量。依次单击数据定义日期,打开定义日期变量的对话框,在左侧列表中单击年份、季度,右侧输入起始日期1986年第1季度。单击确定按钮。1.数据和问题描述当前时间变量信息392.参数设置1)选择菜单分析预测季节性分解,弹出周期性分解窗口。2)把分析变量(游客量)选择到变量框中,将其指定为时序变量;3)在模型类型框中选择模型形式(加法);4)在移动平均权重框中选择移动平均权数的确定方法(结束点按0.5加权)。40某市游客量时序数据.sav表示输出对每个观测量的季节分解结果变量列表分析变量415)如果序列中有几种周期性,则SPSS默认的周期是跨度最大的周期。例如一个数据中存在月度周期12和季度周期4,那么时间序列默认的周期就是12。若想进行季度性周期的分析,需重新进行日期变量的定义,将最高水平的周期定义为季度。6)保存按钮设置保存四种趋势参数的方式,SAF表示序列的季节成分;SAS表示去除季节成分后的序列;STC表示序列的趋势和循环成分;ERR表示序列的不规则成分(随机部分)。4216.8.3季节分解模型的应用举例•利用季节分解模型,对某城市5年内每个季度的游客数量进行分析,以了解其旅游市场的发展变化规律。1.利用季节分解模型给出分解结果;2.绘制原始序列、趋势循环序列和季节调整序列的趋势线;3.预测1991年第2季度的游客量。某市游客量时序数据.sav43模型基本统计信息44时期原始序列移动平均数序列差分SAFSASSTCERR原始序列=移动平均数序列+差分原始序列=SAF+SAS原始序列=SAF+STC+ERR(加法)季节分解结果45原始数据集中增加的变量46绘制序列趋势线的操作47三条序列的图形原始序列(游客量)SAS(去除季节成分)STC(序列的趋势和循环成分,即去除季节成分和随机部分)48预测基本思路:针对STC(序列的趋势和循环成分),运用前面章节的方法去预测,1991年第2季度的STC预测值。最后,1991年第2季度的预测值=它的STC预测值+第2季度的SAF季节成分值(19.67969)49Thankyou