1/5高中数学排列组合问题常用的解题方法江苏省滨海县五汛中学王玉娟排列组合是高中数学的重点和难点之一,是进一步学习概率的基础。排列组合问题通常联系实际,生动有趣,并且能够锻炼同学们的逻辑推理能力和思维的缜密性,但题型多样,思路灵活,不易掌握。实践证明,备考有效方法是题型与解法归类、识别模式、熟练运用,现将高中阶段常用的排列问题和组合问题的解题方法归纳如下:一、相邻问题捆绑法题目中规定相邻的几个元素并为一个组(当作一个元素)参与排列.例1五人并排站成一排,如果甲、乙必须相邻且乙在甲的右边,那么不同的排法种数有种。分析:把甲、乙视为一人,并且乙固定在甲的右边,则本题相当于4人的全排列,4424A种。二、相离问题插空法元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定相离的几个元素插入上述几个元素间的空位和两端.例2七个人并排站成一行,如果甲乙两个必须不相邻,那么不同排法的种数是。分析:除甲乙外,其余5个排列数为55A种,再用甲乙去插6个空位有26A种,不同的排法种数是52563600AA种。三、定序问题缩倍法在排列问题中限制某几个元素必须保持一定顺序,可用缩小倍数的方法.例3A、B、C、D、E五个人并排站成一排,如果B必须站A的右边(A、B可不相邻),那么不同的排法种数有。分析:B在A的右边与B在A的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A种。四、标号排位问题分步法把元素排到指定号码的位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有。分析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法。五、有序分配问题逐分法有序分配问题是指把元素按要求分成若干组,可用逐步下量分组法。例5有甲、乙、丙三项任务,甲需2人承担,乙丙各需1人承担,从10人中选出4人承担这三项任务,不同的选法总数有。分析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承2/5担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520CCC种。六、多元问题分类法元素多,取出的情况也有多种,可按结果要求,分成不相容的几类情况分别计算,最后总计。例6由数字0,1,2,3,4,5组成且没有重复数字的六位数,其中个位数字小于十位数字的共有个。分析:按题意,个位数字只可能是0,1,2,3,4共5种情况,分别有55A个,1131131131343333323333,,,AAAAAAAAAAA个,合并总计300个。例7从1,2,3,…100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?分析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做7,14,21,98A共有14个元素,不能被7整除的数组成的集合记做1,2,3,4,,100A共有86个元素;由此可知,从A中任取2个元素的取法有214C,从A中任取一个,又从A中任取一个共有111486CC,两种情形共符合要求的取法有2111414861295CCC种。例8从1,2,…100这100个数中,任取两个数,使其和能被4整除的取法(不计顺序)有多少种?分析:将1,2,3,100I分成四个不相交的子集,能被4整除的数集4,8,12,100A;能被4除余1的数集1,5,9,97B,能被4除余2的数集2,6,,98C,能被4除余3的数集3,7,11,99D,易见这四个集合中每一个有25个元素;从A中任取两个数符合要;从,BD中各取一个数也符合要求;从C中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525CCCC种。七、交叉问题集合法某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()nABnAnBnAB。例9从6名运动员中选出4个参加4×100m接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同参赛方法?分析:设全集Ⅰ={6人中任取4人参赛的排列},A={甲第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:3/5n()n(A)n(B)n(AB)252()Ⅰ--+∩==种.PPPP64535342八、定位问题优先法某个(或几个)元素要排在指定位置,可先排这个(几个)元素,再排其他元素。例101名老师和4名获奖同学排成一排照像留念,若老师不在两端,则有不同的排法有________种。分析:老师在中间三个位置上选一个有13A种,4名同学在其余4个位置上有44A种方法;所以共有143472AA种。九、多排问题单排法把元素排成几排的问题,可归结为一排考虑,再分段处理。例116个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是。分析:前后两排可看成一排的两段,因此本题可看成6个不同的元素排成一排,共66720A种。例128个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某1个元素要排在后排,有多少种排法?分析:看成一排,某2个元素在前半段四个位置中选排2个,有24A种,某1个元素排在后半段的四个位置中选一个有14A种,其余5个元素任排5个位置上有55A种,故共有1254455760AAA种排法。十、“至少”问题间接法关于“至少”类型组合问题,用间接法较方便。例13从4台甲型和5台乙型电视机中任取出3台,其中至少要甲型和乙型电视机各一台,则不同取法共有种。分析1:逆向思考,至少各一台的反面就是分别只取一种型号,不取另一种型号的电视机,故不同的取法共有33394570CCC种。分析2:至少要甲型和乙型电视机各一台可分两种情况:甲型1台乙型2台;甲型2台乙型1台;故不同的取法有2112545470CCCC种。十一、选排问题先取后排法从几类元素中取出符合题意的几个元素,再安排到一定位置上,可用先取后排法。例14四个不同的球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法共有________种分析:先取四个球中二个为一组,另二组各一个球的方法有24C种,再排:在四个盒中每次排3个有34A种,故共有2344144CA种。4/5例159名乒乓球运动员,其中男5名,女4名,现在要进行混合双打训练,有多少种不同分组法?分析:先取男女运动员各2名,有2254CC种,这四名运动员混和双打练习有22A中排法,故共有222542120CCA种。十二、部分合条件问题排除法在选取总数中,只有一部分合条件,可从总数中减去不合条件数,即为所求。例16以一个正方体顶点为顶点的四面体共有个。分析:正方体8个顶点从中每次取四点,理论上可构成48C四面体,但6个表面和6个对角面的四个顶点共面都不能构成四面体,所以四面体实际共有481258C个。例17四面体的顶点和各棱中点共10点,在其中取4个不共面的点,不同的取法共有种。分析:10个点中任取4个点共有410C种,其中四点共面的有三种情况:①在四面体的四个面上,每面内四点共面的情况为46C,四个面共有464C个;②过空间四边形各边中点的平行四边形共3个;③过棱上三点与对棱中点的三角形共6个;所以四点不共面的情况的种数是44106436141CC种。十三、复杂排列组合问题构造模型法例18马路上有编号为1,2,3…9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种?分析:把此问题当作一个排对模型,在6盏亮灯的5个空隙中插入3盏不亮的灯35C种方法。所以满足条件的关灯方案有10种。说明:一些不易理解的排列组合题,如果能转化为熟悉的模型如填空模型,排队模型,装盒模型可使问题容易解决。十四、利用对应思想转化法对应思想是教材中渗透的一种重要的解题方法,它可以将复杂的问题转化为简单问题处理。例19圆周上有10点,以这些点为端点的弦相交于圆内的交点有多少个?分析:因为圆的一个内接四边形的两条对角线相交于圆内一点,一个圆的内接四边形就对应着两条弦相交于圆内的一个交点,于是问题就转化为圆周上的10个点可以确定多少个不同的四边形,显然有410C个,所以圆周上有10点,以这些点为端点的弦相交于圆内的交点有410C个。以上介绍的各种方法是解决一般排列组合问题常用方法,并非绝对的。数学是一门非常灵活的课程,同一问题有时会有多种解法,所以解题时要注意不断积5/5累经验,总结解题规律,掌握更多的解题技巧。