2012年广西柳州市中考数学试卷

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2012年广西柳州市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题列出的四个选项中,只有一个选项是正确的,每小题选对得3分,选错、不选或多选均得零分)1.李师傅做了一个零件,如图,请你告诉他这个零件的主视图是(A)A.B.C.D.【考点】简单组合体的三视图.【专题】推理填空题.【分析】根据主视图的定义,从前面看即可得出答案.【解答】解:根据主视图的定义,从前面看,得出的图形是一个正六边形和一个圆,故选A.【点评】本题考查了简单组合体的三视图的应用,通过做此题培养了学生的理解能力和观察图形的能力,同时也培养了学生的空间想象能力.2.小张用手机拍摄得到甲图,经放大后得到乙图,甲图中的线段AB在乙图中的对应线段是(D)A.FGB.FHC.EHD.EF【考点】相似图形.【分析】观察图形,先找出对应顶点,再根据对应顶点的连线即为对应线段解答.【解答】解:由图可知,点A、E是对应顶点,点B、F是对应顶点,点D、H是对应顶点,所以,甲图中的线段AB在乙图中的对应线段是EF.故选D.【点评】本题考查了相似图形,根据对应点确定对应线段,所以确定出对应点是解题的关键.3.如图,直线a与直线c相交于点O,∠1的度数是(D)A.60°B.50°C.40°D.30°【考点】对顶角、邻补角.【分析】根据邻补角的和等于180°列式计算即可得解.【解答】解:∠1=180°-150°=30°.故选D.【点评】本题主要考查了邻补角的和等于180°,是基础题,比较简单.4.如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是(B)A.POB.PQC.MOD.MQ【考点】全等三角形的应用.【分析】利用全等三角形对应边相等可知要想求得MN的长,只需求得其对应边PQ的长,据此可以得到答案.【解答】解:要想利用△PQO≌△NMO求得MN的长,只需求得线段PQ的长,故选B.【点评】本题考查了全等三角形的应用,解题的关键是如何将实际问题与数学知识有机的结合在一起.5.娜娜有一个问题请教你,下列图形中对称轴只有两条的是(C)A.圆B.等边三角形C.矩形D.等腰梯形【考点】轴对称图形.【分析】根据轴对称图形的概念,分别判断出四个图形的对称轴的条数即可.【解答】解:A、圆有无数条对称轴,故本选项错误;B、等边三角形有3条对称轴,故本选项错误;C、矩形有2条对称轴,故本选项正确;D、等腰梯形有1条对称轴,故本选项错误.故选C.【点评】本题考查轴对称图形的概念,解题关键是能够根据轴对称图形的概念正确找出各个图形的对称轴的条数,属于基础题.6.如图,给出了正方形ABCD的面积的四个表达式,其中错误的是(C)A.(x+a)(x+a)B.x2+a2+2axC.(x-a)(x-a)D.(x+a)a+(x+a)x【考点】整式的混合运算.【分析】根据正方形的面积公式,以及分割法,可求正方形的面积,进而可排除错误的表达式.【解答】解:根据图可知,S正方形=(x+a)2=x2+2ax+a2,故选C.【点评】本题考查了整式的混合运算、正方形面积,解题的关键是注意完全平方公式的掌握应用.7.定圆O的半径是4cm,动圆P的半径是2cm,动圆在直线l上移动,当两圆相切时,OP的值是(A)A.2cm或6cmB.2cmC.4cmD.6cm【考点】相切两圆的性质.【专题】计算题.【分析】定圆O与动圆P相切时,分两种情况考虑:内切与外切,当两圆内切时,圆心距OP=R-r;当两圆外切时,圆心距OP=R+r,求出即可.【解答】解:设定圆O的半径为R=4cm,动圆P的半径为r=2cm,分两种情况考虑:当两圆外切时,圆心距OP=R+r=4+2=6cm;当两圆内切时,圆心距OP=R-r=4-2=2cm,综上,OP的值为2cm或6cm.故选A【点评】此题考查了相切两圆的性质,两圆相切时有两种情况:内切与外切,当两圆内切时,圆心距等于两半径相减;当两圆外切时,圆心距等于两半径相加.8.你认为方程x2+2x-3=0的解应该是(D)A.1B.-3C.3D.1或-3【考点】解一元二次方程-因式分解法.【分析】利用因式分解法,原方程可变为(x+3)(x-1)=0,即可得x+3=0或x-1=0,继而求得答案.【解答】解:∵x2+2x-3=0,∴(x+3)(x-1)=0,即x+3=0或x-1=0,解得:x1=-3,x2=1.故选D.【点评】此题考查了因式分解法解一元二次方程的知识.此题比较简单,注意掌握十字相乘法分解因式的知识是解此题的关键.9.如图,P1、P2、P3这三个点中,在第二象限内的有(D)A.P1、P2、P3B.P1、P2C.P1、P3D.P1【考点】点的坐标.【分析】根据点的坐标的定义,确定出这三个点的位置,即可选择答案.【解答】解:由图可知,P1在第二象限,点P2在y轴的正半轴上,点P3在x轴的负半轴上,所以,在第二象限内的有P1.故选D.【点评】本题考查了点的坐标,主要是对象限内的点与坐标轴上点的认识,是基础题.10.如图,小红做了一个实验,将正六边形ABCDEF绕点F顺时针旋转后到达A′B′C′D′E′F′的位置,所转过的度数是(A)A.60°B.72°C.108°D.120°【考点】旋转的性质;正多边形和圆.【分析】由六边形ABCDEF是正六边形,即可求得∠AFE的度数,又由邻补角的定义,求得∠E′FE的度数,由将正六边形ABCDEF绕点F顺时针旋转后到达A′B′C′D′E′F′的位置,可得∠EFE′是旋转角,继而求得答案.【解答】解:∵六边形ABCDEF是正六边形,∴∠AFE=180°×(6-2)16=120°,∴∠EFE′=180°-∠AFE=180°-120°=60°,∵将正六边形ABCDEF绕点F顺时针旋转后到达A′B′C′D′E′F′的位置,∴∠EFE′是旋转角,∴所转过的度数是60°.故选A.【点评】此题考查了正六边形的性质、旋转的性质以及旋转角的定义.此题难度不大,注意找到旋转角是解此题的关键.11.小芳给你一个如图所示的量角器,如果你用它来度量角的度数,那么能精确地读出的最小度数是(B)A.1°B.5°C.10°D.180°【考点】近似数和有效数字.【分析】度量器角的最小的刻度就是所求.【解答】解:度量器的最小的刻度是5°,因而能精确地读出的最小度数是5°.故选B.【点评】本题考查了量角器的使用,正确理解:度量器角的最小的刻度就是能精确地读出的最小度数是关键.12.小兰画了一个函数1ayx的图象如图,那么关于x的分式方程12ax的解是(A)A.x=1B.x=2C.x=3D.x=4【考点】反比例函数的图象.【分析】关于x的分式方程ax-1=2的解就是函数y=ax-1中,纵坐标y=2时的横坐标x的值,据此即可求解.【解答】解:关于x的分式方程12ax的解就是函数1ayx中,纵坐标y=2时的横坐标x的值.根据图象可以得到:当y=2时,x=1.故选A.【点评】本题考查了函数的图象,正确理解:关于x的分式方程12ax的解,就是函数1ayx中,纵坐标y=2时的横坐标x的值是关键.二、填空题(本大题共6小题,每小题3分,共18分,请将答案直接填写在答题卡中相应的横线上,在草稿纸、试卷上答题无效).13.如图,在△ABC中,BD是∠ABC的角平分线,已知∠ABC=80°,则∠DBC=40°.【考点】三角形的角平分线、中线和高.【分析】根据角平分线的性质得出∠ABD=∠DBC进而得出∠DBC的度数.【解答】解:∵BD是∠ABC的角平分线,∠ABC=80°,∴∠DBC=∠ABD=12∠ABC=12×80°=40°,故答案为:40.【点评】此题主要考查了角平分线的性质,根据角平分线性质得出∠ABD=∠DBC是解题关键.14.如图,x和5分别是天平上两边的砝码,请你用大于号“>”或小于号“<”填空:x<5.【考点】不等式的性质.【分析】托盘天平是支点在中间的等臂杠杆,天平平衡时砝码的质量等于被测物体的质量,根据图示知被测物体x的质量小于砝码的质量.【解答】解:根据图示知被测物体x的质量小于砝码的质量,即x<5;故答案是:<.【点评】本题考查了不等式的相关知识,利用“天平”的不平衡来得出不等关系,体现了“数形结合”的数学思想.15.一元二次方程3x2+2x-5=0的一次项系数是2.【考点】一元二次方程的一般形式.【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),其中a,b,c分别叫二次项系数,一次项系数,常数项.根据定义即可求解.【解答】解:一元二次方程3x2+2x-5=0的一次项系数是:2.故答案是:2.【点评】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.16.一个圆锥形的漏斗,小李用三角板测得其高度的尺寸如图所示,那么漏斗的斜壁AB的长度为5cm.【考点】圆锥的计算.【分析】根据题意及图形知本题是已知圆锥的底面半径及圆锥的高求圆锥的母线长,利用勾股定理即可求得.【解答】解:根据题意知:圆锥的底面半径为3cm,高为4cm,故圆锥的母线长AB=32+42=5cm.故答案为5.【点评】本题考查了圆锥的计算,解题的关键是知道圆锥的底面半径、高及圆锥的母线构成直角三角形.17.某校篮球队在一次定点投篮训练中进球情况如图,那么这个对的队员平均进球个数是6.【考点】加权平均数.【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.【解答】解:根据题意得:1445184761414,故答案是:6.【点评】本题考查的是加权平均数的求法.本题易出现的错误是求4,5,7,8这四个数的平均数,对平均数的理解不正确.18.已知:在△ABC中,AC=a,AB与BC所在直线成45°角,AC与BC所在直线形成的夹角的余弦值为255(即cosC=255),则AC边上的中线长是8510a或510a.【考点】解直角三角形.【分析】分两种情况:①△ABC为锐角三角形;②△ABC为钝角三角形.这两种情况,都可以首先作△ABC的高AD,解直角△ACD与直角△ABD,得到BC的长,再利用余弦定理求解.【解答】解:分两种情况:①△ABC为锐角三角形时,如图1.作△ABC的高AD,BE为AC边的中线.∵在直角△ACD中,AC=a,cosC=255,∴CD=255a,AD=55a.∵在直角△ABD中,∠ABD=45°,∴BD=AD=55a,∴BC=BD+CD=355a.在△BCE中,由余弦定理,得BE2=BC2+EC2-2BC•EC•cosC22291351251725452520aaaaa∴BE=8510a;②△ABC为钝角三角形时,如图2.作△ABC的高AD,BE为AC边的中线.∵在直角△ACD中,AC=a,cosC=255,∴CD=255a,AD=55a.∵在直角△ABD中,∠ABD=45°,∴BD=AD=55a,∴BC=BD+CD=355a.在△BCE中,由余弦定理,得BE2=BC2+EC2-2BC•EC•cosC222115125125452520aaaaa∴BE=510a.综上可知AC边上的中线长是8510a或510a.故答案为8510a或510a.【点评】本题考查了解直角三角形,勾股定理,余弦定理,有一定难度,进行分类讨论是解题的关键.三、解答题(本大题共8小题,共66分.解答应写出文字说明、演算步骤或推理过程.请将解答写在答题卡中相应的区域内,画图或作辅助线时先使用铅笔画出,确定后必需使用黑色字迹的签字笔描黑.在草稿纸、试卷上答题无效)19.计算:2(23)6【考点】二次根式的混合运算.【专题】计算题.【分析】先去括号得到原式22236,再根据二次根式的性质和乘法法则得到原式266.然后合并即可.【解答】解:原式=2223626

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功