-1-2012年湖北省十堰市中考数学试卷一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内)1.有理数-1,-2,0,3中,最小的一个数是(B)A.-1B.-2C.0D.3【考点】有理数大小比较.【专题】【分析】先求出|-1|=1,|-2|=2,根据负数的绝对值越大,这个数就越小得到-2<-1,而0大于任何负数,小于任何正数,则有理数-1,-2,0,3的大小关系为-2<-1<0<3.【解答】解:∵|-1|=1,|-2|=2,∴-2<-1,∴有理数-1,-2,0,3的大小关系为-2<-1<0<3.故选B.【点评】本题考查了有理数的大小比较:0大于任何负数,小于任何正数;负数的绝对值越大,这个数就越小.2.点P(-2,3)关于x轴对称点的坐标是(C)A.(-3,2)B.(2,-3)C.(-2,-3)D.(2,3)【考点】关于x轴、y轴对称的点的坐标.【专题】【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,即可求解.【解答】解:∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,∴点P(-2,3)关于x轴对称点的坐标是(-2,-3).故选C.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律,注意结合图象,进行记忆和解题.-2-3.郧阳汉江大桥是国家南水北调中线工程的补偿替代项目,是南水北调丹江口库区最长的跨江大桥,桥长约2100米,将数字2100用科学记数法表示为(A)A.2.1×103B.2.1×102C.21×102D.2.1×104【考点】科学记数法—表示较大的数.【专题】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于2100有4位,所以可以确定n=4-1=3.【解答】解:2100=2.1×103.故选A.【点评】此题考查科学记数法表示较大的数的方法,准确确定n值是关键.4.如图是某体育馆内的颁奖台,其主视图是(A)A.B.C.D.【考点】简单组合体的三视图.【专题】【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从颁奖台正面看所得到的图形为A.故选A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.如图,直线BD∥EF,AE与BD交于点C,若∠ABC=30°,∠BAC=75°,则∠CEF的大小为(D)A.60°B.75°C.90°D.105°【考点】平行线的性质;三角形内角和定理.【专题】探究型.【分析】先根据三角形外角的性质求出∠1的度数,再由平行线的性质即可得出结论.-3-【解答】解:∵∠1是△ABC的外角,∠ABC=30°,∠BAC=75°,∴∠1=∠ABC+∠BAC=30°+75°=105°,∵直线BD∥EF,∴∠CEF=∠1=105°.故选D.【点评】本题考查的是平行线的性质及三角形外角的性质,熟知两直线平行,同位角相等是解答此题的关键.6.下列运算中,结果正确的是(D)A.623xxxB.222()xyxyC.235()xxD.822【考点】二次根式的加减法;幂的乘方与积的乘方;同底数幂的除法;完全平方公式.【专题】计算题.【分析】根据同底数幂的乘除法则、完全平方公式及二次根式的加减运算,分别判断各选项,继而可得出答案.【解答】解:A、x6÷x2=x4,故本选项错误;B、(x+y)2=x2+2xy+y2,故本选项错误;C、(x2)3=x6,故本选项错误;D、822222,故本选项正确.故选D.【点评】此题考查了二次根式的加减运算、同底数幂的乘除法则,属于基础题,掌握各部分的运算法则是关键.7.下列说法正确的是(B)A.要了解全市居民对环境的保护意识,采用全面调查的方式B.若甲组数据的方差S2甲=0.1,乙组数据的方差S2乙=0.2,则甲组数据比乙组稳定C.随机抛一枚硬币,落地后正面一定朝上D.若某彩票“中奖概率为1%”,则购买100张彩票就一定会中奖一次【考点】方差;全面调查与抽样调查;随机事件;概率的意义.【专题】-4-【分析】利用方差的定义、全面调查与抽样调查、随机事件及概率的意义进行逐一判断即可得到答案.【解答】解:A、了解全市居民的环保意识,范围比较大,因此采用抽样调查的方法比较合适,本答案错误;B、甲组的方差小于乙组的方差,故甲组稳定正确;C、随机抛一枚硬币,落地后可能正面朝上也可能反面朝上,故本答案错误;D、买100张彩票不一定中奖一次,故本答案错误.故选B.【点评】本题考查了方差的定义、全面调查与抽样调查、随机事件及概率的意义,属于基础题,相对比较简单.8.如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为(B)A.22B.24C.26D.28【考点】梯形;全等三角形的判定与性质.【专题】数形结合.【分析】先判断△AMB≌△DMC,从而得出AB=DC,然后代入数据即可求出梯形ABCD的周长.【解答】解:∵AD∥BC,∴∠AMB=∠MBC,∠DMC=∠MCB,又∵MC=MB,∴∠MBC=∠MCB,∴∠AMB=∠DMC,在△AMB和△DMC中,∵AM=DM,MB=MC,∠AMB=∠DMC∴△AMB≌△DMC,∴AB=DC,四边形ABCD的周长=AB+BC+CD+AD=24.故选B.【点评】此题考查了梯形、全等三角形的判定与性质,属于基础题,解答本题的关键是判断-5-△AMB≌△DMC,得出AB=DC,难度一般.9.一列快车从甲地开往乙地,一列慢车从乙地开往甲地,两车同时出发,两车离乙地的路程S(千米)与行驶时间t(小时)的函数关系如图所示,则下列结论中错误的是(C)A.甲、乙两地的路程是400千米B.慢车行驶速度为60千米/小时C.相遇时快车行驶了150千米D.快车出发后4小时到达乙地【考点】函数的图象.【专题】【分析】根据函数的图象中的相关信息逐一进行判断即可得到答案.【解答】解:观察图象知甲乙两地相距400千米,故A选项正确;慢车的速度为150÷2.5=60千米/小时,故B选项正确;相遇时快车行驶了400-150=250千米,故C选项错误;快车的速度为250÷2.5=100千米/小时,用时400÷100=4小时,故D选项正确.故选C.【点评】本题考查了函数的图象的知识,读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程,通过此类题目的训练能提高同学们的读图能力10.如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO633;⑤S△AOC+S△AOB=9364.其中正确的结论是(A)A.①②③⑤B.①②③④C.①②③④⑤D.①②③【考点】旋转的性质;全等三角形的判定与性质;等边三角形的判定与性质;勾股定理的逆定理.-6-【专题】【分析】证明△BO′A≌△BOC,又∠OBO′=60°,所以△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;由△OBO′是等边三角形,可知结论②正确;在△AOO′中,三边长为3,4,5,这是一组勾股数,故△AOO′是直角三角形;进而求得∠AOB=150°,故结论③正确;S四边形AOBO′=S△AOO′+S△OBO′=6+43,故结论④错误;如图②,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点.利用旋转变换构造等边三角形与直角三角形,将S△AOC+S△AOB转化为S△COO″+S△AOO″,计算可得结论⑤正确.【解答】解:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB=O′B,AB=BC,∴△BO′A≌△BOC,又∵∠OBO′=60°,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;如图①,连接OO′,∵OB=O′B,且∠OBO′=60°,∴△OBO′是等边三角形,∴OO′=OB=4.故结论②正确;∵△BO′A≌△BOC,∴O′A=5.在△AOO′中,三边长为3,4,5,这是一组勾股数,∴△AOO′是直角三角形,∠AOO′=90°,∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,故结论③正确;S四边形AOBO′=S△AOO′+S△OBO′=21334464324,故结论④错误;如图②所示,将△AOB绕点A逆时针旋转60°,使得AB与AC-7-重合,点O旋转至O″点.易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形,则S△AOC+S△AOB=S四边形AOCO″=S△COO″+S△AOO″=213933436244,故结论⑤正确.综上所述,正确的结论为:①②③⑤.故选A.【点评】本题考查了旋转变换中等边三角形,直角三角形的性质.利用勾股定理的逆定理,判定勾股数3、4、5所构成的三角形是直角三角形,这是本题的要点.在判定结论⑤时,将△AOB向不同方向旋转,体现了结论①-结论④解题思路的拓展应用.二、填空题(本题有6个小题,每小题3分,共18分)11.函数2yx中,自变量x的取值范围是x≥2.【考点】函数自变量的取值范围.【专题】【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解答】解:依题意,得x-2≥0,解得x≥2,故答案为:x≥2.【点评】本题考查的知识点为:二次根式的被开方数是非负数.12.计算:031(1)=3.【考点】实数的运算;零指数幂.【专题】计算题.【分析】先去绝对值符号,然后计算零指数幂,继而合并运算即可.【解答】解:原式3113故答案为:3.【点评】此题考查了绝对值及零指数幂的运算,属于基础题,掌握零指数幂:a0=1(a≠0)-8-是关键,难度一般.13.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数是7.【考点】考点:条形统计图;众数.分析:根据条形统计图可知,环数为5,6,7,8,9,10的人数依次为:1,2,7,6,3,1,其中环数7出现了7次,次数最多,即为这组数据的众数.【专题】【分析】【解答】解:观察条形统计图可知,环数7出现了7次,次数最多,即这组数据的众数为7.故答案为:7.【点评】本题考查了条形统计图,众数的概念.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.14.如图,矩形ABCD中,AB=2,AD=4,AC的垂直平分线EF交AD于点E、交BC于点F,则EF=5.【考点】矩形的性质;线段垂直平分线的性质;勾股定理;相似三角形的判定与性质.【专题】计算题.【分析】连接CE,根据矩形性质得出∠D=∠B=90°,AB=CD=2,AD=BC=4,AD∥BC,求出EF=2EO,在Rt△CED中,由勾股定理得出CE2=CD2+ED2,求出CE值,求出AC、CO、EO,即可求出EF.【解答】解:连接EC,∵AC的垂直平分线EF,∴AE=EC,∵四边形ABCD是矩形,∴∠D=∠B=90°,AB=CD=2,AD=BC=4,AD∥BC,∴△AOE∽△COF,∴AO/OC=OE/OF,-9-∵OA=OC,∴OE=OF,即EF=2OE,在Rt△CED中,由勾股定理得:CE2=CD2+ED2,集CE2=(4-CE)2+22,解得:CE=52,∵在Rt△ABC中,AB=2,BC=4,由勾股定理得:AC=25,∴CO=5,∵在Rt△CEO中,CO=5,CE=52,由勾股定理得:EO=52,∴EF=2EO=5,故答案为:5.【点评】本题考查了矩形性质,相似三角形的性质和判定,勾股定理,线段的垂直平分线性质的应用,关键是求出EO长,用的数学思想是方程思想.15.如图,Rt△ABC中,∠ACB=90°,∠B=30°,AB=12cm,以A