第1页共8页湖北省荆门市二O一二年初中毕业生学业及升学考试一、选择题(本大题12个小题,每小题只有唯一正确答案,每小题3分,共36分)1.下列实数中,无理数是()A.-52B.πC.9D.|-2|2.用配方法解关于x的一元二次方程x2-2x-3=0,配方后的方程可以是()A.(x-1)2=4B.(x+1)2=4C.(x-1)2=16D.(x+1)2=163.已知:直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于()A.30°B.35°C.40°D.45°4.若29xy与|x-y-3|互为相反数,则x+y的值为()A.3B.9C.12D.275.对于一组统计数据:2,3,6,9,3,7,下列说法错误..的是()A.众数是3B.中位数是6C.平均数是5D.极差是76.已知点M(1-2m,m-1)关于x轴的对称点...在第一象限,则m的取值范围在数轴上表示正确的是()7.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()8.如图,点A是反比例函数y=2x(x>0)的图象上任意一点,AB∥x轴交反比例函数y=-3x的图象于点B,以AB为边作□ABCD,其中C、D在x轴上,则S□ABCD为()A.2B.3C.4D.59.如图,△ABC是等边三角形,P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为()A.2B.23C.3D.310.如图,已知正方形ABCD的对角线长为22,将正方形ABCD沿直线EF折叠,则图中阴影部分的周长为()A.82B.42C.8D.611.已知:多项式x2-kx+1是一个完全平方式,则反比例函数y=1kx的解析式为()A.y=1xB.y=-3xC.y=1x或y=-3xD.y=2x或y=-2x100.5100.5100.5100.5A.B.C.D.ACBA.B.C.D.l11第3题图l22第8题图ADCByxO2yx3yx第9题图ADEFPQCB第10题图ADEFCB第2页共8页12.已知:顺次连结矩形各边的中点,得到一个菱形,如图①;再顺次连结菱形各边的中点,得到一个新的矩形,如图②;然后顺次连结新的矩形各边的中点,得到一个新的菱形,如图③;如此反复操作下去,则第2012个图形中直角三角形的个数有()A.8048个B.4024个C.2012个D.1066个二、填空题(本大题共5个小题,每小题3分,共15分)13.计算116-(-2)-2-(3-2)0=____.14.如图,在直角坐标系中,四边形OABC是直角梯形,BC∥OA,⊙P分别与OA、OC、BC相切于点E、D、B,与AB交于点F.已知A(2,0),B(1,2),则tan∠FDE=____.15.如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为____cm2.(结果可保留根号)16.新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[1,m-2]的一次函数是正比例函数,则关于x的方程11x+1m=1的解为__.17.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE—ED—DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:AD=BE=5;cos∠ABE=35;当0<t≤5时,y=25t2;当t=294秒时,△ABE∽△QBP;其中正确的结论是____(填序号).三、解答题(本大题共7个小题,共69分)18.(本题满分8分)先化简,后求值:211()(3)31aaaa,其中a=2+1.19.(本题9分)如图,Rt△ABC中,∠C=90°,将△ABC沿AB向下翻折后,再绕点A按顺时针方向旋转α度(α<∠BAC),得到Rt△ADE,其中斜边AE交BC于点F,直角边DE分别交AB、BC于点G、H.(1)请根据题意用实线补全图形;(2)求证:△AFB≌△AGE.图(1)图(2)第17题图ADEPQCBMNHytO571010cm第15题图12cm第14题图ADEFCByxOP图①图②图③第3页共8页20.(本题满分10分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.21.(本题满分10分)如图所示为圆柱形大型储油罐固定在U型槽上的横截面图.已知图中ABCD为等腰梯形(AB∥DC),支点A与B相距8m,罐底最低点到地面CD距离为1m.设油罐横截面圆心为O,半径为5m,∠D=56°,求:U型槽的横截面(阴影部分)的面积.(参考数据:sin53°≈0.8,tan56°≈1.5,π≈3,结果保留整数)22.(本题满分10分)荆门市是著名的“鱼米之乡”.某水产经销商在荆门市长湖养殖场批发购进草鱼和乌鱼(俗称黑鱼)共75千克,且乌鱼的进货量大于40千克.已知草鱼的批发单价为8元/千克,乌鱼的批发单价与进货量的函数关系如图所示.(1)请直接写出批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式;(2)若经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出89%、95%,要使总零售量不低于进货量的93%,问该经销商应怎样安排进货,才能使进货费用最低?最低费用是多少?第21题图ACODB类型ADCB人数ADCB06012018024030040%10%αADEFGCBH第4页共8页23.(本题满分10)已知:y关于x的函数y=(k-1)x2-2kx+k+2的图象与x轴有交点.(1)求k的取值范围;(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k-1)x12+2kx2+k+2=4x1x2.①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最大值.24.(本题满分12分)如图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连结AB、AE、BE.已知tan∠CBE=13,A(3,0),D(-1,0),E(0,3).(1)求抛物线的解析式及顶点B的坐标;(2)求证:CB是△ABE外接圆的切线;(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与△ABE相似,若存在,直接写出....点P的坐标;若不存在,请说明理由;(4)设△AOE沿x轴正方向平移t个单位长度(0<t≤3)时,△AOE与△ABE重叠部分的面积为s,求s与t之间的函数关系式,并指出t的取值范围.图甲AEDCByxO图乙(备用图)AEDCByxO进货量(千克)20第22题图402426批发单价(元)第5页共8页参考答案及评分标准一、选择题(每选对一题得3分,共36分)1.B2.A3.B4.D5.B6.A7.B8.D9.C10.C11.C12.B二、填空题(每填对一题得3分,共15分)13.-114.1215.753+36016.x=317.①③④18.解:原式=311aa=21a.…………………………………………………………5分当a=2+1时,原式=2211=2.………………………………………………8分19.解:(1)画图,如图1;…………………………………………………………………4分(2)由题意得:△ABC≌△AED.……………………………………………………………5分∴AB=AE,∠ABC=∠E.…………………………………………………………………6分在△AFB和△AGE中,,,,ABCEABAE∴△AFB≌△AGE(ASA).……………………………………………………………………9分20.解:(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.2分(2)如图2;………………………………………………………………………………………5分(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D粽的人有3200人.………………………………7分(4)如图3;(列表方法略,参照给分).……………………………………………………………………8分P(C粽)=312=14.开始ABCDBCDACDABDABC图3类型ADCB人数ADCB06012018024030040%10%图220%30%α图1ADEFGCBH第6页共8页答:他第二个吃到的恰好是C粽的概率是14.……………………………………………10分21.解:如图4,连结AO、BO.过点A作AE⊥DC于点E,过点O作ON⊥DC于点N,ON交⊙O于点M,交AB于点F.则OF⊥AB.∵OA=OB=5m,AB=8m,∴AF=BF=12AB=4(m),∠AOB=2∠AOF.………………………………………………3分在Rt△AOF中,sin∠AOF=AFAO=0.8=sin53°.∴∠AOF=53°,则∠AOB=106°.……………………………………………………………5分∵OF=22OAAF=3(m),由题意得:MN=1m,∴FN=OM-OF+MN=3(m).………………………………………………………………6分∵四边形ABCD是等腰梯形,AE⊥DC,FN⊥AB,∴AE=FN=3m,DC=AB+2DE.在Rt△ADE中,tan56°=AEDE=32,∴DE=2m,DC=12m.……………………………7分∴S阴=S梯形ABCD-(S扇OAB-S△OAB)=12(8+12)×3-(106360π×52-12×8×3)=20(m2).答:U型槽的横截面积约为20m2.…………………………………………………………10分22.解:(1)y=26(2040),24(40).xxxx≤≤……………………………………………………………4分(2)设该经销商购进乌鱼x千克,则购进草鱼(75-x)千克,所需进货费用为w元.由题意得:40,89%(75)95%93%75.xxx≥解得x≥50.……………………………………………………………………………………6分由题意得w=8(75-x)+24x=16x+600.……………………………………………………8分∵16>0,∴w的值随x的增大而增大.∴当x=50时,75-x=25,W最小=1400(元).答:该经销商应购进草鱼25千克,乌鱼50千克,才能使进货费用最低,最低费用为1400元.……………………………………………………………………………………………10分23.解:(1)当k=1时,函数为一次函数y=-2x+3,其图象与x轴有一个交点.……1分当k≠1时,函数为二次函数,其图象与x轴有一个或两个交点,令y=0得(k-1)x2-2kx+k+2=0.△=(-2k)2-4(k-1)(k+2)≥0,解得k≤2.即k≤2且k=1.……………………………2分综上所述,k的取值范围是k≤2.……………………………………………………………3分(2)①∵x1≠x2,由(1)知k<2且k=1.由题意得(k-1)x12+(k+2)=2kx1.(*)………………………………………………………4分将(*)代入(k-1)x12+2kx2+k+2=4x1x2中得:2k(x1+x2)=4x1x2.……………………………………………………………………