汽车动力新技术主讲:邓亚东汽车工程学院一、内燃机发展史•内燃机是燃料在机器内部燃烧而将能量释放做功的,它的工质在燃烧前是燃油和空气的混合气,在燃烧后则是燃烧产物。•内燃机以其热效率高、结构紧凑,机动性强,运行维护简便的优点著称于世。一百多年以来,内燃机的巨大生命力经久不衰。目前世界上内燃机的拥有量大大超过了任何其它的热力发动机,在国民经济中占有相当重要的地位。现代内燃机更是成为了当今用量最大、用途最广、无一与之匹敌的的最重要的热能机械。最早的内燃机——煤气机•最早出现的内燃机是以煤气为燃料的煤气机。1860年,法国发明家莱诺制成了第一台实用内燃机(单缸、二冲程、无压缩和电点火的煤气机,输出功率为0.74—1.47KW,转速为100r/min,热效率为4%)。1876年,德国人奥托制成了第一台四冲程往复活塞式内燃机(单缸、卧式、以煤气为燃料、功率大约为2.21KW、180r/min)。在这部发动机上,奥托增加了飞轮,使运转平稳,把进气道加长,又改进了气缸盖,使混合气充分形成。这是一部非常成功的发动机,其热效率相当于当时蒸汽机的两倍。•煤气机虽然比蒸汽机具有很大的优越性,但在社会化大生产情况下,仍不能满足交通运输业所要求的高速、轻便等性能。因为它以煤气为燃料,需要庞大的煤气发生炉和管道系统。而且煤气的热值低,故煤气机转速慢,比功率小。到19世纪下半叶,随着石油工业的兴起,用石油产品取代煤气作燃料已成为必然趋势。汽油机的诞生和发展•1883年,戴姆勒和迈巴赫制成了第一台四冲程往复式汽油机,此发动机上安装了迈巴赫设计的化油器,还用白炽灯管解决了点火问题。它的特点是功率大,质量轻、体积小、转速快和效率高,特别适用于交通工具。与此同时,本茨研制成功了现在仍在使用的点火装置和水冷式冷却器。•在汽车和飞机工业的推动下汽油机取得了长足的发展。按提高汽油机的功率、热效率、比功率和降低油耗等主要性能指标的过程,可以把汽油机的发展分为四个阶段。①第一阶段是上世纪最初二十年,为适应交通运输的要求,以提高功率和比功率为主。采取的主要技术措施是提高转速、增加缸数和改进相应辅助装置。这个时期内,转速从上世纪的500—800r/min提高到1000—1500r/min,比功率从3.68W/Kg提高到441.3—735.5W/Kg,对提高飞机的飞行性能和汽车的负载能力具有重大的意义。②第二阶段时间在20年代,主要解决汽油机的爆震燃烧问题。当时汽油机的压缩比达到4时,汽油机就发生爆震。美国通用汽车公司研究室的米格雷和鲍义德通过在汽油中加入少量的四乙基铝,干扰氧和汽油分子化合的正常过程,解决了爆震的问题,使压缩比从4提高到了8,大大提高了汽油机的功率和热效率。③第三阶段是从20年代后期到40年代早期,主要是在汽油机上装备增压器。废气涡轮增压可使气压增至1.4—1.6大气压,他的应用为提高汽油机的功率和热效率开辟了一个新的途径。但是其真正的广泛应用,却是在50年代后期才普及的。④第四阶段从50年代至今,汽油机技术在原理重大变革之前发展已近极致。它的结构越来越紧凑,转速越来越高。其技术现状为:缸内喷射;多气门技术;进气滚流,稀薄分层燃烧;电子控制点火正时、汽油喷射及空燃比随工况精确控制等全面电子发动机管理;废气在循环及三元催化等排气净化技术等。其集中体现在近年来研制成功并投产的缸内直喷分层充气稀燃汽油机(GDI)。•但是随着70年代开始的电子技术在发动机上的应用,为内燃机技术的改进提供了条件,使内燃机基本上满足了目前世界各国有关排放、节能、可靠性和舒适性等方面的要求。内燃机电子控制现已包括电控燃油喷射、电控点火、怠速控制、排放控制、进气控制、增压控制、警告提示、自我诊断、失效保护等诸多方面。内燃机家族的另一个明星——柴油机•1892年,德国工程师R.狄塞尔受面粉厂粉尘爆炸的启发,设想将吸入气缸的空气高度压缩,使其温度超过燃料的自燃温度,再用高压空气将燃料吹入气缸,使之着火燃烧。他首创的压缩点火式内燃机(柴油机)于1897年研制成功,为内燃机的发展开拓了新途径。狄塞尔开始力图使内燃机实现卡诺循环,以求获得最高的热效率,但实际上做到的是近似的等压燃烧。其热效率达26%。压缩点火式内燃机的问世,引起了世界机械业的极大兴趣。压缩点火式内燃机也以发明者而命名为狄塞尔引擎(Dieselengine)。这种内燃机以后大多用柴油为燃料,故又称为柴油机。1898年,柴油机首先用于固定式发电机组,1903年用作商船动力,1904年装于舰艇,1913年第一台以柴油机为动力的内燃机车制成,1920年左右始用于汽车和农业机械。•近百年来,柴油机的热效率提高近80%,比功率提高几十倍,空气利用率达90%。当今柴油机的技术水平表现为:优良的燃烧系统;超高压喷射;增压和增压中冷;可控废气再循环和氧化催化器;降低噪声的双弹簧喷油器;全电子发动机管理等,集中体现在以采用电控共轨式燃油喷射系统为特征的新一代柴油机上。•增压技术在柴油机上的应用要比汽油机晚一些。早在20年代就有人提出压缩空气提高进气密度的设想,直到1926年瑞士人A.J.伯玉希才第一次设计了一台带废气涡轮增压器的增压发动机。由于当时的技术水平和工艺、材料的限制,还难以制造出性能良好的涡轮增压器,加上二次大战的影响,增压技术为能迅速普及,直到大战结束后,增压技术的研究和应用才受到重视。1950年增压技术才开始在柴油机上使用并作为产品提供市场。旋转活塞式发动机•早在往复活塞式内燃机诞生以前,人们就曾致力于创造旋转活塞式的内燃机,但均未获成功。直到1957年联邦德国工程师F.汪克尔才研制出旋转活塞式发动机(转子发动机),被称为汪克尔发动机。它具有近似三角形的旋转活塞,在特定型面的气缸内作旋转运动,按奥托循环工作。这种发动机通过多年的努力和发展,在成功地解决了密封与缸体震纹之后,也在一定领域(如赛车和小型发电机组)获得较好的应用。目前日本Mazda公司还生产这种发动机,并应用于汽车上。燃气轮机•燃气轮机全称为燃气涡轮发动机,燃气轮机可以是一个广泛的称呼,基本原理大同小异,包括涡轮喷射引擎等等都包含在内。而一般所指的燃气涡轮引擎,通常是指用于船舶、车辆、发电机组等的。•1791年,英国人巴伯首次描述了燃气轮机的工作过程;1872年,德国人施托尔策设计了一台燃气轮机,并于1900~1904年进行了试验,但因始终未能脱开起动机独立运行而失败;1905年,法国人勒梅尔和阿芒戈制成第一台能输出功的燃气轮机,但效率太低,因而未获得实用。•1920年,德国人霍尔茨瓦特制成第一台实用的燃气轮机,其效率为13%、功率为370千瓦,按等容加热循环工作,但因等容加热循环以断续爆燃的方式加热,存在许多重大缺点而被人们放弃。•1939年,在瑞士制成了四兆瓦发电用燃气轮机,效率达18%。同年,在德国制造的喷气式飞机试飞成功,从此燃气轮机进入了实用阶段,并开始迅速发展。•在燃气轮机获得广泛应用的同时,还出现了燃气轮机与其他热机相结合的复合装置。最早出现的是与活塞式内燃机相结合的装置;50~60年代,出现了以自由活塞发气机与燃气轮机组成的自由活塞燃气轮机装置,但由于笨重和系统较复杂,到70年代就停止了生产。此外,还发展了柴油机燃气轮机复合装置;另有一类利用燃气轮机排气热量供热(或蒸汽)的全能量系统,可有效地节约能源,已用于多种工业生产中。二、内燃机代用燃料I.发展代用燃料的重要性70年代初,由于石油危机导致原油价格成倍上涨,引起对发动机燃油经济性的重视,但由于要控制排气污染,因而增加了改进燃油经济性的困难。为了减少内燃机对日益短缺的石油基燃料的依赖,各国正在进行内燃机燃用代用燃料的研究工作,以逐步取代汽油和柴油,如燃用天然气、甲醇、乙醇、合成汽油、合成柴油以及二甲基醚(CH3OCH3)等。能源短缺和环境污染能源危机与汽车能源转型•随着机动车保有量的激增,机动车尾气排放已逐渐成为城市空气的主要污染源之一,且近年来呈现出不断恶化的势头。1998年,全国140个城市(占全国城市总量的43.5%)的空气质量超过国家三级标准,属于严重污染城市。按照国家环保中心预测,2010年我国汽车尾气排放量将占空气污染物总量的64%。城市空气环境的恶化已对我国国民经济持续发展和人民身体健康产生了极大的负面影响。•为缓解我国石油资源匮乏和需求之间的矛盾及有利于我国长期可持续稳定的发展和环境保护,需要规划与发展内燃机燃用清洁代用燃料以替代石油基燃料即汽油和柴油。II.内燃机的代用燃料•内燃机的代用燃料可分为液体和气体两种,此外也可用电能来代替燃料,驱动汽车。1.液体代用燃料醇类燃料•醇类燃料主要包括甲醇和乙醇。低分子醇容易吸水而造成使用困难。如果把甲醇和异丁烯转化成甲基叔丁基醚或合成为汽油,就可与汽油互溶,也可以成为汽油的组分。乙醇因具有原料广泛、使用简便等特点,可以在基本上不改变发动机结构的情况下掺烧或者单烧。(1)甲醇作为车用燃料有以下优点:•甲醇可从煤或天然气中提炼,它可以大规模专门生产,也可以利用现有的氮肥厂设备联产,或采用多联产(热、电、化工产品如甲醇、二甲醚、合成气等联产,简称IGCC),生产成本低。•甲醇是液体燃料,可以沿用石油燃料的运输储存系统,基础设施投入少。•燃用甲醇燃料可以提高发动机动力性能、经济性能,有害排放物低,是一种清洁代用燃料。甲醇作为车用燃料的优缺点(2)甲醇的主要缺点是:•有毒、不可饮入口中或溅入眼中,须对甲醇燃料加强管理并严格遵守操作规程。•排气中有未燃醇和醛有害气体排放物,需进行排气后处理。其中未燃醇在环境中存在的时间短,可以被带氧微生物分解。•甲醇对有色金属、橡胶有腐蚀作用,需对燃油系统在结构上与材料上采取措施,如采用耐溶胀的硫化橡胶、不锈钢制油箱及聚四氟乙烯燃油管道等。(1)乙醇作为内燃机代用燃料有以下优点:•辛烷值高(110左右),可以代替目前正在使用的无铅抗爆添加剂甲基叔丁基醚(MTBE)。乙醇无毒,对环境无危害,而MTBE则被怀疑会污染地下水和致膀胱癌等,在美国一些州已被禁用,2004年全面禁用。•乙醇是含氧燃料,蒸发潜热高,发动机燃用乙醇可以实现无烟排放,并能大幅度降低CO排放,HC,NOx也可以有不同程度的降低(取决于发动机结构及其调整状态)。火花点火发动机可以燃用纯乙醇或乙醇和汽油的混合燃料(掺烧比例大时需加助溶剂),压燃式发动机也可以燃用乙醇,但需有助燃措施。乙醇作为车用燃料的优缺点(2)乙醇作为内燃机代用燃料的缺点是:•乙醇生产成本高,虽然利用阶段性过剩、存放期过长甚至霉变的粮食制取酒精可以在一定程度上缓解粮食过剩和燃料不足的矛盾。但我国可耕地面积少(为世界的7%),人口多(占全世界人口的22%),粮食来源不稳定,生产乙醇过程中耗能大(生产乙醇的耗能量接近乙醇发出的能量)、耗粮大,生产乙醇过程中有大量CO2排放,利用粮食生产乙醇,只能适度开展。此外利用乙醇作为燃料或辛烷值添加剂时,政府要考虑给予补贴,否则在市场经济条件下难以推广应用。•利用能源作物(如甜高粱的茎杆、木薯等)制乙醇也是可行的,生产成本比粮食制乙醇低1000元/t左右,秸秆制酒精是将秸秆通过酶水解成单糖,然后发酵成乙醇。由于酶成本高,秸秆收集比较困难,世界上未大规模生产。秸秆比较适宜在汽化生成沼气后,作为民用燃料。二甲醚(DimethylEther,缩写DME)DME(CH3OCH3)是目前世界上被普遍看好的压燃式发动机超清洁燃料。它可以用作民用、车用和燃汽轮机燃料替代LPG、柴油和天然气,其主要特点是:•广泛的可获得性。可以由煤或天然气制得,从而可以利用我国丰富的煤炭资源。•超清洁。研究结果表明,柴油机燃用二甲醚时可以实现高的功率输出和热效率(与柴油机相当或略高),低噪声和无烟燃烧,其排放不采用复杂后处理装置即可达欧洲III和美国ULEV标准,并有潜力达到欧洲IV排放标准。•生产DME的传统技术为二步法,即由合成气制成甲醇,再将甲醇脱水制成DME,生产成本较高。目前已开发成功生产DME的先进方法(一步法或整体一步法),可大幅度降低其生产成本(1100元/t左右)