2013年小学数学教师招聘试卷

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2013年小学数学教师招聘试卷一、选择题(共14个小题,每小题4分,共56分.在每个小题给出的四个备选答案中,只有一个是符合题目要求的)1.-5的绝对值是().A.5B.C.D.-52.计算的结果是().A.-9B.-6C.D.3.计算的结果是().A.B.aC.D.4.2002年我国发现首个世界级大气田,储量达6000亿立方米,6000亿立方米用科学记数法表示为().A.亿立方米B.亿立方米C.亿立方米D.亿立方米5.下列图形中,不是中心对称图形的是().A.菱形B.矩形C.正方形D.等边三角形6.如果两圆的半径分别为3cm和5cm,圆心距为10cm,那么这两个圆的公切线共有().A.1条B.2条C.3条D.4条7.如果反比例函数的图象经过点P(-2,3),那么k的值是().A.-6B.C.D.68.在△ABC中,∠C=90°.如果,那么sinB的值等于().A.B.C.D.9.如图,CA为⊙O的切线,切点为A,点B在⊙O上.如果∠CAB=55°,那么∠AOB等于().A.55°B.90°C.110°D.120°10.如果圆柱的底面半径为4cm,母线长为5cm,那么它的侧面积等于().A.20pB.40pC.20D.4011.如果关于x的一元二次方程有两个不相等的实数根,那么k的取值范围是().A.k<1B.k≠0C.k<1且k≠0D.k>112.在抗击“非典”时期的“课堂在线”学习活动中,李老师从5月8日至5月14日在网上答题个数的记录如下表:日期5月8日5月9日5月10日5月11日5月12日5月13日5月14日答题个数68555056544868在李老师每天的答题个数所组成的这组数据中,众数和中位数依次是().A.68,55B.55,68C.68,57D.55,5713.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E.如果AB=10,CD=8,那么AE的长为().A.2B.3C.4D.514.三峡工程在6月1日至6月10日下闸蓄水期间,水库水位由106米升至135米,高峡平湖初现人间.假设水库水位匀速上升,那么下列图象中,能正确反映这10天水位h(米)随时间t(天)变化的是().二、填空题(共4个小题,每小题4分,共16分)15.在函数中,自变量x的取值范围是________.16.如图,在等边三角形ABC中,点D、E分别在AB、AC边上,且DE∥BC.如果BC=8cm,AD∶AB=1∶4,那么△ADE的周长等于________cm.17.如图,B、C是河岸边两点,A是对岸岸边一点,测得∠ABC=45°,∠ACB=45°,BC=60米,则点A到岸边BC的距离是________米.18.观察下列顺序排列的等式:9×0+1=1,9×1+2=11,9×2+3=21,9×3+4=31,9×4+5=41,……猜想:第n个等式(n为正整数)应为________.三、(共3个小题,共14分)19.(本小题满分4分)分解因式:.20.(本小题满分4分)计算:21.(本小题满分6分)用换元法解方程四、(本题满分5分)22.如图,在□ABCD中,点E、F在对角线AC上,且AE=CF.请你以F为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).(1)连结________.(2)猜想:________=________.(3)证明:五、(本题满分6分)23.列方程或方程组解应用题:在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“二环路车流量为每小时10000辆.”乙同学说:“四环路比三环路车流量每小时多2000辆.”丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍.”请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少.六、(本题满分7分)24.已知:关于x的方程的两个实数根是、,且.如果关于x的另一个方程的两个实数根都在和之间,求m的值.七、(本题满分8分)25.已知:在ABC中,AD为∠BAC的平分线,以C为圆心,CD为半径的半圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,FE∶FD=4∶3.(1)求证:AF=DF;(2)求∠AED的余弦值;(3)如果BD=10,求△ABC的面积.更多资料到八、(本题满分8分)26.已知:抛物线与x轴的一个交点为A(-1,0).(1)求抛物线与x轴的另一个交点B的坐标;(2)D是抛物线与y轴的交点,C是抛物线上的一点,且以AB为一底的梯形ABCD的面积为9,求此抛物线的解析式;(3)E是第二象限内到x轴、y轴的距离的比为5∶2的点,如果点E在(2)中的抛物线上,且它与点A在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点P,使△APE的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.参考答案一、选择题(每小题4分,共56分)1.A2.D3.C4.B5.D6.D7.A8.B9.C10.B11.C12.A13.A14.B二、填空题(每小题4分,共16分)15.x≥-316.617.3018.9(n-1)+n=10n-9(或9(n-1)+n=10(n-1)+1)三、(共14分)19.解:…………………………………………………………………2分………………………………………………………4分20.解:……………………………………………………………3分=.…………………………………………………………………………4分21.解:设,…………………………………………………………………1分则原方程化为.………………………………………………………2分∴.解得,……………………………………………………………3分当y=-2时,.∴.解得,.…………………………………………………………………4分当y=-3时,.∴∵△=9-12<0,∴此方程无实数根.………………………………………………………………5分经检验,,都是原方程的根.…………………………………………6分∴原方程的根为,.四、(本题满分5分)22.答案一:(1)BF……………………………………………………………………1分(2)BF,DE……………………………………………………………………………2分(3)证法一:∵四边形ABCD为平行四边形,∴AD=BC,AD∥BC.∴∠DAE=∠BCF.……………………………………………………………………3分在△BCF和△DAE中,∴△BCF≌△DAE.……………………………………………4分∴BF=DE.……………………………………………………………………………5分证法二:连结DB、DF,设DB、AC交于点O.∵四边形ABCD为平行四边形,∴AO=OC,DO=OB.∵AE=FC,∴AO-AE=OC-FC.∴EO=OF.……………………………………………………………………………3分∴四边形EBFD为平行四边形.………………………………………………………4分∴BF=DE.……………………………………………………………………………5分答案二:(1)DF…………………………………………………………………………1分(2)DF,BE……………………………………………………………………………2分(3)证明:略(参照答案一给分).五、(本题满分6分)23.解法一:设高峰时段三环路的车流量为每小时x辆,…………………………1分则高峰时段四环路的车流量为每小时(x+2000)辆.………………………………2分根据题意,得3x-(x+2000)=2×10000.…………………………………………4分解这个方程,得x=11000.…………………………………………………………5分x+2000=13000.答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13000辆.…………………………………………………………………………………………………6分解法二:设高峰时段三环路的车流量为每小时x辆,四环路的车流量为每小时y辆.…………………………………………………………………………………………………1分根据题意,得……………………………………………………………………4分解这个方程组,得……………………………………………………………………………5分答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13000辆.…………………………………………………………………………………………………6分六、(本题满分7分)24.解:∵,是方程①的两个实数根,∴,.∵,∴.∴.解得,………………………………………………………………3分(ⅰ)当m=-1时,方程①为.∴,.方程②为.∴,.∵-5、3不在-3和1之间,∴m=-1不合题意,舍去.…………………………………………………………5分(ⅱ)当m=4时,方程①为.∴,.方程②为.∴,.∵2<3<5<6,即,∴方程②的两根都在方程①的两根之间.∵m=4.………………………………………………………………………………7分综合(ⅰ)(ⅱ),m=4.注:利用数形结合解此题正确的,参照上述评分标准给分.七、(本题满分8分)25.解法一:(1)证明:∵AD平分∠BAC,∴∠BAD=∠DAC.∵∠B=∠CAE,∴∠BAD+∠B=∠DAC+∠CAE.∵∠ADE=∠BAD+∠B,∴∠ADE=∠DAE.∴EA=ED.∵DE是半圆C的直径,∴∠DFE=90°.∴AF=DF.……………………………………………………………………………2分(2)解:连结DM.∵DE是半圆C的直径,∴∠DME=90°.∵FE∶FD=4∶3,∴可设FE=4x,则FD=3x.由勾股定理,得DE=5x.∴AE=DE=5x,AF=FD=3x.由切割线定理的推论,得AF·AD=AM·AE.∴3x(3x+3x)=AM·5x.∴.∴.在Rt△DME中,.………………………………………………………5分(3)解:过A点作AN⊥BE于N.由,得.∴.在△CAE和△ABE中,∵∠CAE=∠B,∠AEC=∠BEA,∴△CAE∽△ABE.∴.∴.∴.解得x=2.∴,.∴.…………………………………………8分解法二:(1)证明:同解法一(1).(2)解:过A点作AN⊥BE于N.在Rt△DFE中,∵FE∶FD=4∶3,∴可设FE=4x,则FD=3x.由勾股定理,得DE=5x.∴AE=DE=5x,AF=FD=3x.∵,∴.∴.∴∴由勾股定理,得.∴.…………………………………………………5分(3)解:在△CAE和△ABE中,∴∠CAE=∠B,∠AEC=∠BEA,∴△CAE∽△ABE.∴.∴∴.解得x=2.∴,.∴.…………………………………………8分八、(本题满分8分)26.解法一:(1)依题意,抛物线的对称轴为x=-2.∵抛物线与x轴的一个交点为A(-1,0),∴由抛物线的对称性,可得抛物线与x轴的另一个交点B的坐标为(-3,0).…………………………………………………………………………………………………2分(2)∵抛物线与x轴的一个交点为A(-1,0),∴.∴t=3a.∴.∴D(0,3a).∴梯形ABCD中,AB∥CD,且点C在抛物线上,∵C(-4,3a).∴AB=2,CD=4.∵梯形ABCD的面积为9,∴.∴.∴a±1.∴所求抛物线的解析式为或…………………5分(3)设点E坐标为(,)依题意,,,且.∴.①设点E在抛物线上,∴.解方程组得∵点E与点A在对称轴x=-2的同侧,∴点E坐标为(,).设在抛物线的对称轴x=-2上存在一点P,使△APE的周长最小.∵AE长为定值,∴要使△APE的周长最小,只须PA+PE最小.∴点A关于对称轴x=-2的对称点是B(-3,0),∴由几何知识可知,P是直线BE与对称轴x=-2的交点.设过点E、B的直线的解析式为,∴解得∴直线

1 / 20
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功