课题:人工智能第1讲人工智能概述、数据模型教学内容:人工智能的定义和发展。人类智能与人工智能。人工智能的学派及其争论。人工智能的研究和应用领域。人工智能对人类的影响。重点:数据模型第一章绪论从1956年正式提出人工智能学科算起,40多年来,取得长足的发展,成为一门广泛的交叉和前沿科学。总的说来,人工智能的目的就是让计算机这台机器能够象人一样思考。如果希望做出一台能够思考的机器,那就必须知道什么是思考,更进一步讲就是什么是智慧。什么样的机器才是智慧的呢?科学家已经作出了汽车,火车,飞机,收音机等等,它们模仿我们身体器官的功能,但是能不能模仿人类大脑的功能呢?到目前为止,我们也仅仅知道这个装在我们天灵盖里面的东西是由数十亿个神经细胞组成的器官,我们对这个东西知之甚少,模仿它或许是天下最困难的事情了。当计算机出现后,人类开始真正有了一个可以模拟人类思维的工具,在以后的岁月中,无数科学家为这个目标努力着。现在人工智能已经不再是几个科学家的专利了,全世界几乎所有大学的计算机系都有人在研究这门学科,学习计算机的大学生也必须学习这样一门课程,在大家不懈的努力下,现在计算机似乎已经变得十分聪明了。例如,1997年5月,IBM公司研制的深蓝(DeepBlue)计算机战胜了国际象棋大师卡斯帕洛夫(Kasparov)。大家或许不会注意到,在一些地方计算机帮助人进行其它原来只属于人类的工作,计算机以它的高速和准确为人类发挥着它的作用。人工智能始终是计算机科学的前沿学科,计算机编程语言和其它计算机软件都因为有了人工智能的进展而得以存在。人工智能理论进入21世纪,正酝酿着新的突破--人工生命的提出,不仅意味着人类试图从传统的工程技术途径,而且将开辟生物工程技术途径,去发展人工智能;同时人工智能的发展,又将作为人工生命科学的重要支柱和推动力量。可以预言:人工智能的研究成果将能够创造出更多更高级的智能制品,并使之在越来越多的领域超越人类智能;人工智能将为发展国民经济和改善人类生活作出更大贡献。1.1人工智能的定义和发展1.1.1人工智能的定义国际上人工智能研究作为一门科学的前沿和交叉学科,但像许多新兴学科一样,人工智能至今尚无统一的定义。要给人工智能下个准确的定义是困难的。人类的许多活动,如解算题、猜谜语、进行讨论、编制计划和编写计算机程序,甚至驾驶汽车和骑自行车等等,都需要智能。如果机器能够执行这种任务,就可以认为机器已具有某种性质的人工智能。不同科学或学科背景的学者对人工智能有不同的理解,提出不同的观点,人们称这些观点为符号主义(Symbolism)、连接主义(Connectionism)和行为主义(Actionism)等,或者叫做逻辑学派(Logicism)、仿生学派(Bionicsism)和生理学派(Physiologism)。此外还有计算机学派、心理学派和语言学派等。我们将在1.3节中综述他们的主要观点。这里,我们结合自己的理解来定义人工智能。这些定义是比较狭义的。定义1智能机器(intelligentmachine)能够在各类环境中自主地或交互地执行各种拟人任务(anthropomorphictasks)的机器。例子1:能够模拟人的思维,进行博弈的计算机。1997年5月11日,一个名为深蓝(DeepBlue)的IBM计算机系统战胜当时的国际象棋世界冠军盖利.卡斯帕罗夫(GarryKasparov)。例子2:能够进行深海探测的潜水机器人。例子3:在星际探险中的移动机器人,如美国研制的火星探测车。定义2人工智能斯坦福大学的Nilsson提出人工智能是关于知识的科学(知识的表示、知识的获取以及知识的运用),本书中首先从学科的界定来定义:·人工智能(学科)是计算机科学中涉及研究、设计和应用智能机器的一个分支。它的近期主要目标在于研究用机器来模仿和执行人脑的某些智能功能,并开发相关理论和技术。从人工智能所实现的功能来定义:·人工智能(能力)是智能机器所执行的通常与人类智能有关的功能,如判断、推理、证明、识别、感知、理解、设计、思考、规划、学习和问题求解等思维活动。1.1.2人工智能的起源与发展人工智能的发展是以硬件与软件为基础。它的发展经历了漫长的发展历程。人们从很早就已开始研究自身的思维形成,早在亚里士多德(公元前384-322年)在着手解释和编注他称之为三段论的演绎推理时就迈出了向人工智能发展的早期步伐,可以看作为原始的知识表达规范。亚里士多德(公元前384-322年)什么是三段论?三段论是以真言判断为其前提的一种演绎推理,它借助于一个共同项,把两个直言判断联系起来,从而得出结论。例如:一切金属都是能够熔解的;铁是金属;所以,铁是能够熔解的。1.2人类智能与人工智能1.2.1研究认知过程的任务人的心理活动具有不同的层次,它可以与计算机的层次相比较,见图1.1。心理活动的最高层级是思维策略,图1.1人类任知活动与计算机的比较中间一层是初级信息处理,最低层级是生理过程,即中枢神经系统、神经元和大脑的活动,与此相应的是计算机程序、语言和硬件。研究认知过程的主要任务是探求高层次思维决策与初级信息处理的关系,并用计算机程序来模拟人的思维策略水平,而用计算机语言模拟人的初级信息处理过程。1.2.2智能信息处理系统的假设物理符号系统的假设伴随有3个推论,或称为附带条件。推论一:既然人具有智能,那么他(她)就一定是个物理符号系统。推论二:既然计算机是一个物理符号系统,它就一定能够表现出智能。推论三:既然人是一个物理符号系统,计算机也是一个物理符号系统,那么我们就能够用计算机来模拟人的活动。控制论之父维纳1940年主张计算机五原则。维纳在1940年写给朋友的一封信中,对现代计算机的设计曾提出了几条原则:(1)不是模拟式,而是数字式;(2)由电子元件构成,尽量减少机械部件;(3)采用二进制,而不是十进制;(4)内部存放计算表;(5)在计算机内部存贮数据。这些原则是十分正确的。1940年,维纳开始考虑计算机如何能像大脑一样工作。他发现了二者的相似性。维纳认为计算机是一个进行信息处理和信息转换的系统,只要这个系统能得到数据,机器本身就应该能做几乎任何事情。而且计算机本身并不一定要用齿轮,导线,轴,电机等部件制成。麻省理工学院的一位教授为了证实维纳的这个观点,甚至用石块和卫生纸卷制造过一台简单的能运行的计算机。维纳系统地创建了控制论,根据这一理论,一个机械系统完全能进行运算和记忆。1.2.3人类智能的计算机模拟帕梅拉·麦考达克(PamelaMcCorduck)在她的著名的人工智能历史研究《机器思维》(MachineWhoThink,1979)中曾经指出:在复杂的机械装置与智能之间存在着长期的联系。从几世纪前出现的神话般的复杂巨钟和机械自动机开始,人们已对机器操作的复杂性与自身的智能活动进行直接联系。著名的英国科学家图灵被称为人工智能之父,图灵不仅创造了一个简单的通用的非数字计算模型,而且直接证明了计算机可能以某种被理解为智能的方法工作。1950年,图灵发表了题为《计算机能思考吗?》的论文,给人工智能下了一个定义,而且论证了人工智能的可能性。定义智慧时,如果一台机器能够通过称之为图灵实验的实验,那它就是智慧的。图灵实验的本质就是让人在不看外型的情况下不能区别是机器的行为还是人的行为时,这个机器就是智慧的。AlanTuring(1912-1954)图灵测试游戏由一男(A)、一女(B)和一名询问者(C)进行;C与A、B被隔离,通过电传打字机与A、B对话。询问者只知道二人的称呼是X,Y,通过提问以及回答来判断,最终作出X是A,Y是B或者X是B,Y是A的结论。游戏中,A必须尽力使C判断错误,而B的任务是帮助C。当一个机器代替了游戏中的A,并且机器将试图使得C相信它是一个人。如果机器通过了图灵测试,就认为它是智慧的。物理符号系统假设的推论一也告诉我们,人有智能,所以他是一个物理符号系统;推论三指出,可以编写出计算机程序去模拟人类的思维活动。这就是说,人和计算机这两个物理符号系统所使用的物理符号是相同的,因而计算机可以模拟人类的智能活动过程。1.3人工智能的学派及其争论目前人工智能的主要学派:符号主义、联结主义和行为主义。任何新生事物的成长都不是一帆风顺的,人工智能也不例外。从人工智能孕育于人类社会的母胎时,就引起人们的争议。自1956年问世以来,人工智能也是在比较艰难的环境中顽强地拚搏与成长的。一方面,社会上对人工智能的科学性有所怀疑,或者对人工智能的发展产生恐惧。在一些国家(如前苏联),甚至曾把人工智能视为反科学的异端邪说。在我国那史无前例的年代里,也有人把人工智能作为迷信来批判,以致连人工智能这个名词也不敢公开提及。另一方面,科学界内部对人工智能也表示怀疑。真正的科学与任何其它真理一样,是永远无法压制的。人工智能研究必将排除千难万险,尤如滚滚长江,后浪推前浪,一浪更比一浪高地向前发展。在我国,人工智能科学也开始迎来了它的春天。1.3.1人工智能的主要学派目前人工智能的主要学派有下列3家:(1)符号主义(Symbolicism),又称为逻辑主义(Logicism)、心理学派(Psychlogism)或计算机学派(Computerism),其原理主要为物理符号系统(即符号操作系统)假设和有限合理性原理。(2)联结主义(Connectionism),又称为仿生学派(Bionicsism)或生理学派(Physiologism),其原理主要为神经网络及神经网络间的连接机制与学习算法。(3)行为主义(Actionism),又称进化主义(Evolutionism)或控制论学派(Cyberneticsism),其原理为控制论及感知-动作型控制系统。他们对人工智能发展历史具有不同的看法。1.符号主义认为人工智能源于数理逻辑。数理逻辑从19世纪末起就获迅速发展;到20世纪30年代开始用于描述智能行为。计算机出现后,又在计算机上实现了逻辑演绎系统。正是这些符号主义者,早在1956年首先采用人工智能这个术语。后来又发展了启发式算法→专家系统→知识工程理论与技术,并在80年代取得很大发展。符号主义曾长期一枝独秀,为人工智能的发展作出重要贡献,尤其是专家系统的成功开发与应用,为人工智能走向工程应用和实现理论联系实际具有特别重要意义。在人工智能的其它学派出现之后,符号主义仍然是人工智能的主流派。这个学派的代表有纽厄尔、肖、西蒙和尼尔逊(Nilsson)等。2.联结主义认为人工智能源于仿生学,特别是人脑模型的研究。它的代表性成果是1943年由生理学家麦卡洛克(McCulloch)和数理逻辑学家皮茨(Pitts)创立的脑模型,即MP模型。60-70年代,联结主义,尤其是对以感知机(perceptron)为代表的脑模型的研究曾出现过热潮,由于当时的理论模型、生物原型和技术条件的限制,脑模型研究在70年代后期至80年代初期落入低潮。直到Hopfield教授在1982年和1984年发表两篇重要论文,提出用硬件模拟神经网络时,联结主义又重新抬头。1986年鲁梅尔哈特(Rumelhart)等人提出多层网络中的反向传播(BP)算法。此后,联结主义势头大振,从模型到算法,从理论分析到工程实现,为神经网络计算机走向市场打下基础。现在,对ANN的研究热情仍然不减。3.行为主义认为人工智能源于控制论。控制论思想早在40-50年代就成为时代思潮的重要部分,影响了早期的人工智能工作者。到60-70年代,控制论系统的研究取得一定进展,播下智能控制和智能机器人的种子,并在80年代诞生了智能控制和智能机器人系统。行为主义是近年来才以人工智能新学派的面孔出现的,引起许多人的兴趣与研究。1.3.2对人工智能基本理论的争论不同人工智能学派对人工智能的研究方法问题也有不同的看法。这些问题涉及人工智能是否一定采用模拟人的智能的方法?若要模拟又该如何模拟?对结构模拟和行为模拟、感知思维和行为、对认知与学习以及逻辑思维和形象思维等问题是否应分离研究?是否有必要建立人工智能的统一理论系统?若有,又应以什么方法为基础?1.符号主义认为人的认知基元是