2012抽屉原理在初等数学中的运用

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

抽屉原理在初等数学中的运用摘要:抽屉原理也称为鸽巢原理,它是组合数学中的一个最基本的原理.同时也是数学中的一个重要原理.抽屉原理的简单形式可以描述为:“如果把1+n个球或者更多的球放进n个抽屉,必有一个抽屉至少有两个球.”它的正确性十分明显,如果将其灵活地运用,则可得到一些意想不到的效果.运用抽屉原理可以论证许多关于“存在”、“总有”、“至少有”的存在性问题。学习抽屉原理可以用来解决数学中的许多问题,也可以解决生活中的一些现象。如招生录取、就业安排、资源分配、职称评定等等,都不难看到抽屉原理的作用.各种形式的抽屉原理在高等数学和初等数学中经常被采用,使用该原理的关键在于如何巧妙地构造抽屉,即如何找出合乎问题条件的分类原则,抽屉构造得好,可得出非常巧妙的结论.本文着重从抽屉的构造方法阐述抽屉原理在高等数学和初等数学(竞赛题)中的应用.关键词:抽屉原理;初等数学;应用一、抽屉原理(鸽巢原理)什么是抽屉原理?先举个简单的例子说明,就是将3个球放入2个篮子里,无论怎么放,必有一个篮子中至少要放入2个球,这就是抽屉原理.或者假定有五个鸽子笼,养鸽人养了6只鸽子,当鸽子飞回巢中,那么一定至少有一个鸽笼里有两只鸽子,这就是著名的鸽巢原理.除了这种比较普遍的形式外,抽屉原理还经许多学者推广出其他的形式.比如陈景林、阎满富编著的中国铁道出版社出版的《组合数学与图论》一书中对抽屉原理给出了比较具体的定义,概括起来主要有下面几种形式:原理1把多于n个的元素按任一确定的方式分成n个集合,则一定有一个集合中含有两个或两个以上的元素.原理2把m个元素任意放到n)(nm个集合里,则至少有一个集合里至少有k个元素,其中原理3把无穷个元素按任一确定的方式分成有穷个集合,则至少有一个集合中仍含无穷个元素.卢开澄在《组合数学》(第三版)中将抽屉原理(书中称为鸽巢原理)又进行了推广[2].鸽巢原理:设k和n都是任意正整数,若至少有kn+1只鸽子分配在n个鸽巢中,则至少存在一个鸽巢中有至少k+1只鸽子.二、抽屉的构造途径在利用抽屉原理解题时,首先要明确哪些是“球”,哪些是“抽屉”,而这两者通常不会现成存在于题目中,尤其是“抽屉”,往往需要我们用一些巧妙的方法去构造。我们利用抽屉原理解题的关键,就在于怎样设计“抽屉”.三、抽屉原理在初等数学中的应用初等数学问题的特点:只给出一些相关的条件,或者即使给出一些数值条件,也不能利用这些条件进行计算、或代入求值、或列方程、或做图、或证明等方法去解决,只能利用这些条件进行推理、判断,从而解决问题.讨论存在性问题是数学竞赛中的一类常见问题。处理这类问题常用到抽屉原理。下面我们就列举抽屉原理在初等数学(竞赛)中的应用.例1:某次考试有5道选择题,每题都有4个不同的答案供选择,每人每题恰选1个答案.在2000份答卷中发现存在一个n,使得任何n份答卷中都存在4份,其中每2份的答案都至多3题相同.n的最小可能值.(2000,中国数学奥林匹克)解:将每道题的4种答案分别记为1,2,3,4,每份试卷上的答案记为),,,,(kjihg,其中{}4,3,2,1∈,,,,kjihg,令{}),,,,4(),,,,,3(),,,,,2(),,,,,1(kjihkjihkjihkjih,kjih,,,=1,2,3,4,共得256个四元组.由于2000=256×7+208,故由抽屉原理知,有8份试卷上的答案属于同一个四元组.取出这8份试卷后,余下的1992份试卷中仍有8份属于同一个四元组,再取出这8份试卷,余下的1984份试卷中又有8份属于同一个四元组.又取出这8份试卷.三次共取出24份试卷,在这24份试卷中,任何4份中总有2份的答案属于同一个四元组,不满足题目的要求.所以,25≥n.下面证明n=25.令{}{}.4,3,2,1∈,,,,),4(mod0≡|),,,,(kjihgkjihgkjihgS++++=则S=256,且S中去掉6个元素,当余下的250种答案中的每种答案都恰有8人选用时,共得到2000份答案,其中的25份答案中,总有4份不相同.由于它们都在S中,当然满足题目要求.这表明,n=25满足题目要求.综上可知,所求的n的最小可能值为25.先运用抽屉原理给出n的下界,然后用构造法给出例子.这是一道典型的运用构造法解题的好题目.在解题中合理构造抽屉往往会收到意想不到的效果.例2:任给7个实数,证明必存在两个实数a,b满足0≤3)-(ba1+ab.证明:设七个实数为7321,,,,aaaa,作iQ=iarctga(7,,2,1   =i),显然iQ∈(2π,2π-),把(2π,2π-)等分成六个区间:(3π-,2π-),(6π-,3π-),(0,6π-),(6π,0),(3π,6π),(2π,3π),由抽屉原理,721,,,QQQ必有两个属于同一区间,不妨设为iQjQ,,而不论iQjQ,属于哪个小区间都有6π-≤0jiQQ,由正切函数的单调性可知,)*(316π)-(0=tgQQtgji,不妨记jitgQbtgQa==,,则)-(jiQQtg=abba+1-,而由)(知0≤abba+131,又因为有0-ba(jiQQ),1+0ab,从而有0≤3)-(ba1+ab.例3:从1-100的自然数中,任意取出51个数,证明其中一定有两个数,它们中的一个是另一个的整数倍。分析:要解决该题,就得找到其关键,其实就在于“两个数”,他们的关系是“其中一个是另一个的整数倍”。我们要构造“抽屉”,就要在每个抽屉中任取两个数,并且有一个数是另一个的整数倍,而只有把公比是正整数的整个等比数列都放在同一个抽屉才行,这里用得到一个自然数分类的基本知识:任何一个正整数都可以表示成一个奇数与2的方幂的积,即若m∈N+,K∈N+,n∈N,则m=(2k-1)·2n,并且这种表示方式是唯一的,如1=1×2°,2=1×21,3=3×2°,…证明:因为任何一个正整数都能表示成一个奇数乘2的方幂,并且这种表示方法是唯一的,所以我们可把1-100的正整数分成如下50个抽屉(因为1-100中共有50个奇数):(1){1,1×2,1×22,1×23,1×24,1×25,1×26};(2){3,3×2,3×22,3×23,3×24,3×25};(3){5,5×2,5×22,5×23,5×24};(4){7,7×2,7×22,7×23};(5){9,9×2,9×22,9×23};……(25){49,49×2};(26){51};……(50){99}。这样,1-100的正整数就无重复,无遗漏地放进这50个抽屉内了。从这100个数中任取51个数,也即从这50个抽屉内任取51个数,根据抽屉原则,其中必定至少有两个数属于同一个抽屉,即属于(1)-(25)号中的某一个抽屉,显然,在这25个抽屉中的任何同一个抽屉内的两个数中,一个是另一个的整数倍。说明:(1)从上面的证明中可以看出,本题能够推广到一般情形:从1-2n的自然数中,任意取出n+1个数,则其中必有两个数,它们中的一个是另一个的整数倍。想一想,为什么?因为1-2n中共含1,3,…,2n-1这n个奇数,因此可以制造n个抽屉,而n+1>n,由抽屉原则,结论就是必然的了。给n以具体值,就可以构造出不同的题目。例2中的n取值是50,还可以编制相反的题目,如:“从前30个自然数中最少要(不看这些数而以任意方式地)取出几个数,才能保证取出的数中能找到两个数,其中较大的数是较小的数的倍数?”(2)如下两个问题的结论都是否定的(n均为正整数)想一想,为什么?①从2,3,4,…,2n+1中任取n+1个数,是否必有两个数,它们中的一个是另一个的整数倍?②从1,2,3,…,2n+1中任取n+1个数,是否必有两个数,它们中的一个是另一个的整数倍?你能举出反例,证明上述两个问题的结论都是否定的吗?(3)如果将(2)中两个问题中任取的n+1个数增加1个,都改成任取n+2个数,则它们的结论是肯定的还是否定的?你能判断证明吗?例4:(第6届国际中学生数学奥林匹克试题)17名科学家中每两名科学家都和其他科学家通信,在他们通信时,只讨论三个题目,而且任意两名科学家通信时只讨论一个题目,证明:其中至少有三名科学家,他们相互通信时讨论的是同一个题目。证明:视17个科学家为17个点,每两个点之间连一条线表示这两个科学家在讨论同一个问题,若讨论第一个问题则在相应两点连红线,若讨论第2个问题则在相应两点连条黄线,若讨论第3个问题则在相应两点连条蓝线。三名科学家研究同一个问题就转化为找到一个三边同颜色的三角形。(本例同第十二讲染色问题例4)考虑科学家A,他要与另外的16位科学家每人通信讨论一个问题,相应于从A出发引出16条线段,将它们染成3种颜色,而16=3×5+1,因而必有6=5+1条同色,不妨记为AB1,AB2,AB3,AB4,AB5,AB6同红色,若Bi(i=1,2,…,6)之间有红线,则出现红色三角线,命题已成立;否则B1,B2,B3,B4,B5,B6之间的连线只染有黄蓝两色。考虑从B1引出的5条线,B1B2,B1B3,B1B4,B1B5,B1B6,用两种颜色染色,因为5=2×2+1,故必有3=2+1条线段同色,假设为黄色,并记它们为B1B2,B1B3,B1B4。这时若B2,B3,B4之间有黄线,则有黄色三角形,命题也成立,若B2,B3,B4,之间无黄线,则△B2,B3,B4,必为蓝色三角形,命题仍然成立。说明:(1)本题源于一个古典问题--世界上任意6个人中必有3人互相认识,或互相不认识。(美国普特南数学竞赛题)。(2)将互相认识用红色表示,将互相不认识用蓝色表示,(1)将化为一个染色问题,成为一个图论问题:空间六个点,任何三点不共线,四点不共面,每两点之间连线都涂上红色或蓝色。求证:存在三点,它们所成的三角形三边同色。(3)问题(2)可以往两个方向推广:其一是颜色的种数,其二是点数。本例便是方向一的进展,其证明已知上述。如果继续沿此方向前进,可有下题:在66个科学家中,每个科学家都和其他科学家通信,在他们的通信中仅仅讨论四个题目,而任何两个科学家之间仅仅讨论一个题目。证明至少有三个科学家,他们互相之间讨论同一个题目。(4)回顾上面证明过程,对于17点染3色问题可归结为6点染2色问题,又可归结为3点染一色问题。反过来,我们可以继续推广。从以上(3,1)→(6,2)→(17,3)的过程,易发现6=(3-1)×2+2,17=(6-1)×3+2,66=(17-1)×4+2,同理可得(66-1)×5+2=327,(327-1)×6+2=1958…记为r1=3,r2=6,r3=17,r4=66,r5=327,r6=1958,…我们可以得到递推关系式:rn=n(rn-1-1)+2,n=2,3,4…这样就可以构造出327点染5色问题,1958点染6色问题,都必出现一个同色三角形。参考文献[1]陈景林,阎满富.组合数学与图论.北京:中国铁道出版社出版,2000.4-6[2]卢开澄.组合数学(第3版).北京清华大学出版社,2002.07[3]曹汝成.组合数学.广州:华南理工大学出版社,2001.170-173[4]忘向东,周士藩等.高等代数常用方法.山西:高校联合出版社,1989.64-66[5]刘否南.华夏文集.太原:高校联合出版社,1995.88-90[6]严示健.抽屉原则及其它的一些应用.数学通报,1998,4.10-11[7]丁一鸣《中学数学教学》,1988年第02期[8]杨忠.《中学生数学》,2010年第08期[9]石立叶,于娜,刘文涵.《抽屉原理及其应用》,2009,4.11

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功