2012版高三物理一轮复习课件6.2动量守恒定律及其应用(大纲版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

共43页1第二课时动量守恒定律及其应用共43页2第一关:基础关展望高考共43页3基础知识一、动量守恒定律知识讲解(1)内容:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变.共43页4(2)数学表达式①p=p′.即系统相互作用前的总动量p等于相互作用后的总动量p′.若相互作用的物体有两个,则通常写为:m1v1+m2v2=m1v1′+m2v2′.共43页5②Δp=p′-p=0.即系统总动量的增量为零.③Δp1=-Δp2.即将相互作用的系统内的物体分为两部分,其中一部分动量的增量与另一部分动量的增量大小相等,方向相反.共43页6(3)动量守恒定律成立的条件内力不改变系统的总动量,外力才能改变系统的总动量,在下列三种情况下,可以使用动量守恒定律:①系统不受外力或所受外力的矢量和为零.②系统所受外力远小于内力,如碰撞或爆炸瞬间,外力可以忽略不计.③系统某一方向不受外力或所受外力的矢量和为零,或外力远小于内力,则该方向动量守恒(分动量守恒).共43页7活学活用1.如图所示,A、B两物体的质量mAmB,中间用一段细绳相连并在一被压缩的弹簧,放在平板小车C上后,A、B、C均处于静止状态.若地面光滑,则在细绳被剪断后,A、B从C上未滑离之前,A、B在C上向相反方向滑动过程中()共43页8A.若A、B与C之间的摩擦力大小相同,则A、B组成的系统动量守恒,A、B、C组成的系统动量也守恒B.若A、B与C之间的摩擦力大小不相同,则A、B组成的系统动量不守恒,A、B、C组成的系统动量也不守恒C.若A、B和C之间的摩擦力大小不相同,则A、B组成的系统动量不守恒,但A、B、C组成的系统动量守恒D.以上说法均不对共43页9解析:当A、B两物体组成一个系统时,弹簧弹力为内力,而A、B和C之间的摩擦力是外力,当A、B与C之间的摩擦力等大反向时,A、B所组成的系统所受合外力为零,动量守恒;当A、B与C之间的摩擦力大小不相等时,A、B组成的系统所受合外力不为零,动量不守恒.而对于A、B、C组成的系统,由于弹簧的弹力、A和B与C之间的摩擦力均是内力,不管A、B与C之间的摩擦力大小是否相等,A、B、C组成的系统所受合外力均为零,动量守恒,所以A、C选项正确,B、D选项错误.答案:AC共43页10点评:(1)动量守恒的条件是系统不受外力或所受合外力为零,因此在判断系统动量是否守恒时一定要分清内力和外力;(2)在同一物理过程中,系统的动量是否守恒,与系统的选取密切相关,因此,在运用动量守恒定律解题时,一定要明确在哪一过程中哪些物体组成的系统动量是守恒的.共43页11二、碰撞与爆炸问题知识讲解1.碰撞现象(1)动量守恒(2)机械能不增加(3)速度要合理①若碰前两物体同向运动,则应有v后v前,碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有,v′前≥′后.②碰前两物体相向运动,碰后两物体的运动方向不可能都不改变.共43页122.爆炸现象(1)动量守恒:由于爆炸是在极短的时间完成的,爆炸物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒.(2)动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸前后系统的总动能增加.(3)位置不变:爆炸和碰撞的时间极短,因而作用过程中,物体产生的位移很小,一般可忽略不计,可以认为爆炸或碰撞后仍然从爆炸或碰撞前的位置以新的动量开始运动.共43页13活学活用2.如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动.两球质量关系为mB=2mA,规定向右为正方向,A、B两球的初动量均为6kg·m/s.运动中两球发生碰撞,碰撞后A球的动量增量为-4kg·m/s,则()共43页14A.左方是A球,碰撞后A、B两球速度大小之比为2:5B.左方是A球,碰撞后A、B两球速度大小之比为1:10C.右方是A球,碰撞后A、B两球速度大小之比为2:5D.右方是A球,碰撞后A、B两球速度大小之比为1:10共43页15解析:碰撞前A、B组成的系统的动量:p1+p2=(6+6)kg·m/s=12kg·m/s碰撞后A球的动量:p′1=p1+Δp1=[6+(-4)]kg·m/s=2kg·m/s由动量守恒定律:p1+p2=p′1+p′2得p′2=10kg·m/s即m1v′1=2kg·m/sm2v′2=10kg·m/s所以v′1:v′2=2:5又Δp1为负值,由动量定理可知A球碰撞时受力向左,故左方向是A球.答案:A共43页16第二关:技法关解读高考共43页17解题技法一、对动量守恒定律的理解技法讲解(1)矢量性:动量守恒方程是一个矢量方程,对于作用前后物体的运动方向都在同一直线上的问题,应选取统一的正方向,凡是与选取正方向相同的动量为正,相反为负.若方向未知,可设为与正方向相同列动量守恒方程,通过解得结果的正负,判定未知量的方向.共43页18(2)同时性:动量是一个瞬时量,动量守恒指的是系统任一瞬时的动量恒定,列方程m1v1+m2v2=m1v1′+m2v2′时,等号左侧是作用前同一时刻各物体动量的矢量和,等号右侧是作用后同一时刻各物体动量的矢量和,不同时刻的动量不能相加.共43页19(3)参考系的同一性:由于动量大小与参考系的选取有关,因此应用动量守恒定律时,应注意各物体的速度必须是相对同一参考系的速度.一般以地面为参考系.(4)普适性:它不仅适用于两个物体所组成的系统,也适用于多个物体组成的系统;不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统.共43页20典例剖析【例1】如图所示质量为M的小船以速度v0匀速行驶.船上有质量都为m的小孩a和b,他们分别站立在船头和船尾,现小孩a以相对于静止水面的速度v向前跃入水中,然后小孩b沿水平方向以同一速度(相对于静水)向后跃入水中,求小孩b跃入水中后小船的速度.共43页21[解析]由于船在水中匀速行驶,所以人、船组成的系统动量守恒,设小孩b跃入水中后小船的速度为v1,规定小船原来的速度v0方向为正方向,根据动量守恒定律有:(M+2m)v0=Mv1+mv+(-mv)解得:为正值,表明小船的速度方向与原来的方向相同.1012,MmvvvM02,MmvM[答案]方向与原方向相同共43页22二、动量守恒的两种模型技法讲解在运用动量守恒定律处理问题时,常常遇到以下两种模型:1.人船模型:人船模型的适用条件是两个物体组成的系统在运动过程中动量守恒,并且总动量为零.两物体在其内力的相互作用下,各物体的动量虽然都在变化,但总动量仍为零,即0=Mv1-mv2.共43页23系统在运动过程中动量守恒,则系统在运动过程中的平均动量也守恒,即进一步而可得:∴MS1=ms2或此式表明:在两个物体相互作用的过程中,如果物体组成的系统动量守恒,那么在运动过程中物体的位移之比就等于质量的反比.120.Mvmv120ssMmtt12.smsM共43页242.子弹—木块模型这类问题的特点是:木块最初静止于光滑水平面上,子弹射入木块后留在木块内和木块合为一体.此过程动量守恒,但机械能不守恒.共43页25典例剖析【例2】有一艘质量为M=120kg的船停在静水中,船长L=3m.船上一个质量为m=60kg的人从船头走到船尾.不计水的阻力,则船在水中移动的距离为多少?[解析]这道题就是一个“人船模型”题.以人和船组成的系统为研究对象,人在船上走的过程中,系统受到的外力是重力、水的浮力,其合力为零,系统的动量守恒.由动量守恒定律,可以得出各时刻人和船的速度关系,由速度关系再得出位移关系.共43页26以人船静止时为初状态,人在走的过程中某时刻为末状态,设此时人的速度为v1,船的速度为v2,以人的速度为正方向,由动量守恒定律知mv1-Mv2=0,那么有ms1-Ms2=0①人船运动过程如图所示,则s1+s2=L②共43页271212032120606031.12060:MsLmmMmmsLmmMm联立①②方程式解得[答案]1m共43页28【例3】在高为h=10m的高台上,放一质量为M=9.9kg的木块,它与平台边缘的距离L=1m.今有一质量为m=0.1kg的子弹以v0的水平向右的速度射入木块(作用时间极短),并留在木块中,如图所示.木块向右滑行并冲出平台,最后落在离平台边缘水平距离为处,已知木块与平台的动摩擦因数g取10m/s2,求:(1)木块离开平台时的速度大小;(2)子弹射入木块的速度大小.42xm9,20共43页2912111,2104[]12/4/.2210vxvthgtgvxmsmsh解析设木块离开平台时的速度为共43页302122121002,v,v,::()4.5/25/()()50vv2aL,0/.:MmgagmsMmvvaLmsmvMmvMmvvmsm设子弹射入木块后子弹与木块的共同速度为则木块向右滑行到达平台边缘的速度为在这一过程中木块向左的加速度大小为由运动学公式有在子弹与木块的作用过程中由动量守恒定律得[答案](1)4m/s(2)500m/s共43页31第三关:训练关笑对高考共43页32随堂·训练1.如图所示,设车厢长为L,质量为M,静止在光滑的水平面上,车厢内有一质量为m的物体以初速度v0向右运动,与车厢来回碰撞n次后,静止在车厢中,这时车厢速度是()共43页33A.v0,水平向右B.0C.mv0/(M+m),水平向右D.mv0/(M-m),水平向左解析:物体和车厢组成的系统所受的合外力为零(水平面光滑,故无水平方向的摩擦力,竖直方向上物体和车厢均静止,故系统受支持力与总重力互为平衡力),所以物体和小车碰撞n次的过程中系统动量守恒.系统初状态的动量p=mv0,末状态的动量p′=(M+m)v,根据动量守恒定律p=p′有mv0=(M+m)v,所以车厢的速度v=mv0/(M+m).答案:C共43页342.如图所示,A、B两物体质量分别为mA、mB,且mAmB,置于光滑水平面上,相距较远.将两个大小均为F的力,同时分别作用在A、B上经相同距离后,撤去两个力,两物体发生碰撞并粘在一起后将()共43页35A.停止运动B.向左运动C.向右运动D.运动方向不能确定解析:由于F作用相同距离,故A、B获得的动能相等,即EkA=EkB,又由p2=2mEk,得pApB,撤去F后A、B系统动量守恒知p总=pA-pB,方向向右,故选C.答案:C共43页363.如图,在光滑的水平面上,有一静止的小车,甲、乙两人站在小车左、右两端,当他俩同时相向而行时,发现小车向右运动,下列说法中不正确的是()A.乙的速度必定大于甲的速度B.乙对小车的冲量必定大于甲对小车的冲量C.乙的动量必定大于甲的动量D.甲、乙的动量之和必定不为零共43页37解析:据甲、乙小车构成的系统动量守恒,小车向右运动,表明甲、乙的总动量向左,乙的冲量大于甲的动量.小车受甲、乙的总冲量向右,乙对小车的冲量大于甲对小车的冲量,则B、C、D正确,A错,选A.答案:A共43页384.如图所示,位于光滑水平桌面上的小滑块P和Q都可视作质点,质量相等,Q与轻质弹簧相连.设Q静止,P以某一初速度向Q运动并与弹簧发生碰撞.在整个碰撞过程中,弹簧具有的最大弹性势能等于()共43页39A.PB.PC.12113P4PD.的初动能的初动能的的初动能的的初动能的p22p2:Pv,PQv,,E,121(2)211PQ,,,mv2mvEP,.42pmvmvEmv解析设以初速度与弹簧相碰当、具有共同速度时弹簧弹性势能最大设为将、及弹簧视为系统设向右为正方向系统动量守恒、能量守恒有解得即为的初动能的答案:B共43页40点评:本题考查动量守恒和机械能守恒的条件和应用,要求能对较为复杂的物理过程进行分析,分析整个过程的能量转化情况及出现极值的临界条件是两者速度相同.共43页415.两磁铁各放在一辆小车上,小车能在水平面上无摩擦地沿同一直线运动.已知甲车和磁铁的总质量为0.5kg,乙车和磁铁的总质量为1.0kg.两磁铁的S极相对,推动一下,使两车

1 / 43
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功