课时训练19数列的通项与求和【说明】本试卷满分100分,考试时间90分钟.一、选择题(每小题6分,共42分)1.数列{an}的前n项和Sn=2n2-3n+1,则a4+a5+a6+…+a10等于()A.171B.21C.10D.161【答案】D【解析】原式=S10-S3=2×102-3×10-(2×32-3×3)=161.2.数列{an}的通项公式是an=11nn,若前n项和为10,则项数n为()A.11B.99C.120D.121【答案】C【解析】因an=nnnn111,故Sn=(2-1)+(3-2)+…+(nn1)=1n-1,由Sn=10,故n=120.3.数列{an}的通项公式为an=4n-1,令bn=naaan21,则数列{bn}的前n项和为()A.n2B.n(n+2)C.n(n+1)D.n(2n+1)【答案】B【解析】∵an=4n-1,∴数列{an}是等差数列,且a1=4-1=3,∴bn=nnnnaaan2)143(21=2n+1.显然数列{bn}是等差数列,且b1=2+1=3,它的前n项和Sn=b1+b2+…+bn=2)123(nn=n(n+2).4.数列1,(1+2),(1+2+22),…,(1+2+22+…+2n-1),…的前n项和等于()A.2nB.2n-nC.2n+1-n-2D.n·2n【答案】C【解析】令n=1,排除A、D,又令n=2,排除B.选C.5.数列1,223,324,425,…,nn21的前n项和等于()A.Sn=3-nn21-121nB.Sn=3-nn21-1-221n[来源:学科网]C.Sn=3-nn21-221nD.Sn=3-n2n-221n【答案】A【解析】令Sn=1+223+324+…+nn21,①则21Sn=21+432423+…+121nn.②①-②得∴21Sn=1+322121+…+12121nnn=1+11221211)211(21nnn=1212123nnn.∴Sn=3-nn21-121n,故选A.或者用特殊法.6.Sn=1+3211211+…+n3211等于()A.1nnB.12nnC.12nnD.122nn【答案】B【解析】an=)111(2)1(23211nnnnn,∴Sn=2[(1-21)+(21-31)+…+(111nn)]=2(1-11n)=12nn.7.(2010全国大联考,10)已知数列{an}满足an=*),,(,)2(2*),,(,NnnnnNnnn为奇数为偶数则{an}2k-1项的和为()A.k2-k+1-121kB.k2+k+1-121kC.2111232kkkkD.2111232kkkk【答案】A【解析】取k=1,S1=32,排除B、C;取k=2,S3=514,排除D。二、填空题(每小题5分,共15分)8.已知数列{an}的前n项和Sn=1-5+9-13+17-21+…+(-1)n-1(4n-3),那么S15+S22-S31的值为_________________.【答案】-76【解析】S15=1-5+9-13…+57=1+(9-5)+(17-13)+…+(57-53)=29,同理可得:S22=-44,S31=61,∴S15+S22-S31=-76.9.(2010湖北八校模拟,14)数列{an}中,Sn是前n项和,若a1=1,an+1=31Sn(n≥1),则an=__________.【答案】an=).2()34(31),1(12nnn[来源:学*科*网]【解析】∵an+1=31Sn,①∴an=31Sn-1.②①-②得an+1-an=31an,∴341nnaa(n≥2).∵a2=31S1=31×1=31,∴当n≥2时,an=31×(34)n-2.∴an=).2()34(31),1(12nnn10.数列{an}满足a1=21,a1+a2+…+an=n2an,则an=_______________.【答案】)1(1nn(n∈N*)【解析】∵a1+a2+…+an=n2an①∴a1+a2+…+an+an+1=(n+1)2·an+1.②②-①得∴an+1=(n+1)2an+1-n2an,21nnaann.[来源:学,科,网]∴an=a1·2312aaaa·…·)1(1)1(2121,115342312112nnnnnnaan.三、解答题(11—13题每小题10分,14题13分,共43分)11.求a+2a2+3a3+…+nan.[来源:学科网ZXXK]【解析】设S=a+2a2+3a3+…+nan.若a=0,则S=0;若a=1,则S=2)1(nn;若a≠0,且a≠1,则S=a+2a2+3a3+…+nan,①aS=a2+2a3+…+(n-1)an+nan+1②①-②得(1-a)S=a+a2+…+an-nan+1=aaan1)1(-nan+1.∴S=anaaaann1)1()1(12.[来源:学科网]12.(2010湖北黄冈中学模拟,17)已知等比数列{an}中,a1=64,公比q≠1,a2,a3,a4又分别是某等差数列的第7项,第3项,第1项.(1)求an;(2)设bn=log2an,求数列{|bn|}的前n项和Tn.【解析】(1)依题意有a2-a4=3(a3-a4),即2a4-3a3+a2=0,2a1q3-3a1q2+a1q=0,即2q2-3q+1=0.∵q≠1,∴q=21.故an=64×(21)n-1,(2)bn=log2[64×(21)n-1]=log227-n=7-n,∴|bn|=.77,77nnnnn≤7时,Tn=2)13(nn;n>7时,Tn=T7+2)6)(7(nn=21+2)6)(7(nn,故Tn=).7(212)6)(7(),7(2)13(nnnnnn13.(2010中科大附中模拟,19)等差数列{an}是递增数列,前n项和为Sn,且a1,a3,a9成等比数列,S5=a52;(1)求数列{an}的通项公式;(2)若数列{bn}满足bn=121nnaann,求数列{bn}的前99项的和.【解析】(1)设数列{an}公差为d(d>0),∵a1,a3,a9成等比数列,∴a32=a1a9,(a1+2d)2=a1(a1+8d),d2=a1d.①∵d≠0,∴a1=d.∵Sn=a52,∴5a1+245·d=(a1+4d)2.②由①②得:a1=53d=53,∴an=53+(n-1)×53=53n.bn=)1111(925)1(1925)1(5353122nnnnnnnnnn.∴b1+b2+b3+…+b99=925[99+(1-21)+(21-31)+…+(1001991)]=925(100-1001)=41111.14.设数列{an}的前n项和为Sn,若对于任意的n∈N*,都有Sn=2an-3n,(1)求数列{an}的首项与递推关系式an+1=f(an);(2)先阅读下面定理,若数列{an}有递推关系an+1=Aan+B,其中A、B为常数,且A≠1,B≠0,则数列{an-AB1}是以A为公比的等比数列,请你在第(1)题的基础上应用本定理,求数列{an}的通项公式;(3)求数列{an}的前n项和Sn.【解析】(1)∵Sn=2an-3n,∴Sn+1=2an+1-3(n+1).∴an+1=Sn+1-Sn=2an+1-2an-3.故an+1=f(an)=2an+3.(2)∵an+1+3=2(an+3),∴{an+3}为等比数列,首项为a1+3=6,公比为2,故an+3=6×2n-1=3×2n.∴an=3×2n-3.(3)Sn=a1+a2+a3+…+an=3(2+22+…+2n)-3n=3×2n+1-6-3n.