-1-三角函数与向量的交汇题型分析及解题策略考点如下:1.考查三角式化简、求值、证明及求角问题.2.考查三角函数的性质与图像,特别是y=Asin(x+)的性质和图像及其图像变换.3.考查平面向量的基本概念,向量的加减运算及几何意义,此类题一般难度不大,主要用以解决有关长度、夹角、垂直、平行问题等.4.考查向量的坐标表示,向量的线性运算,并能正确地进行运算.5.考查平面向量的数量积及运算律(包括坐标形式及非坐标形式),两向量平行与垂直的充要条件等问题.6.考查利用正弦定理、余弦定理解三角形问题.【典例分析】题型一三角函数平移与向量平移的综合三角函数与平面向量中都涉及到平移问题,虽然平移在两个知识系统中讲法不尽相同,但它们实质是一样的,它们都统一于同一坐标系的变化前后的两个图象中.解答平移问题主要注意两个方面的确定:(1)平移的方向;(2)平移的单位.这两个方面就是体现为在平移过程中对应的向量坐标.【例1】把函数y=sin2x的图象按向量→a=(-6,-3)平移后,得到函数y=Asin(ωx+)(A>0,ω>0,||=2)的图象,则和B的值依次为()A.12,-3B.3,3C.3,-3D.-12,3【分析】根据向量的坐标确定平行公式为x=x+6y=y+3,再代入已知解析式可得.还可以由向量的坐标得图象的两个平移过程,由此确定平移后的函数解析式,经对照即可作出选择.【解析1】由平移向量知向量平移公式x=x-6y=y-3,即x=x+6y=y+3,代入y=sin2x得y+3=sin2(x+6),即到y=sin(2x+π3)-3,由此知=3,B=-3,故选C.【解析2】由向量→a=(-6,-3),知图象平移的两个过程,即将原函数的图象整体向左平移6个单位,再向下平移3个单位,由此可得函数的图象为y=sin2(x+6)-3,即y=sin(2x+π3)-3,由此知=3,B=-3,故选C.【点评】此类题型将三角函数平移与向量平移有机地结合在一起,主要考查分析问题、解决问题的综合应用能力,同时考查方程的思想及转化的思想.本题解答的关键,也是易出错的地方是确定平移的方向及平移的大小.题型二三角函数与平面向量平行(共线)的综合此题型的解答一般是从向量平行(共线)条件入手,将向量问题转化为三角问题,然后再利-2-用三角函数的相关知识再对三角式进行化简,或结合三角函数的图象与民性质进行求解.此类试题综合性相对较强,有利于考查学生的基础掌握情况,因此在高考中常有考查.【例2】已知A、B、C为三个锐角,且A+B+C=π.若向量→p=(2-2sinA,cosA+sinA)与向量→q=(cosA-sinA,1+sinA)是共线向量.(Ⅰ)求角A;(Ⅱ)求函数y=2sin2B+cosC-3B2的最大值.【分析】首先利用向量共线的充要条件建立三角函数等式,由于可求得A角的正弦值,再根据角的范围即可解决第(Ⅰ)小题;而第(Ⅱ)小题根据第(Ⅰ)小题的结果及A、B、C三个角的关系,结合三角民恒等变换公式将函数转化为关于角B的表达式,再根据B的范围求最值.【解】(Ⅰ)∵→p、→q共线,∴(2-2sinA)(1+sinA)=(cosA+sinA)(cosA-sinA),则sin2A=34,又A为锐角,所以sinA=32,则A=3.(Ⅱ)y=2sin2B+cosC-3B2=2sin2B+cos(π-3-B)-3B2=2sin2B+cos(3-2B)=1-cos2B+12cos2B+32sin2B=32sin2B-12cos2B+1=sin(2B-6)+1.∵B∈(0,2),∴2B-6∈(-6,56),∴2B-6=2,解得B=3,ymax=2.【点评】本题主要考查向量共线(平行)的充要条件、三角恒等变换公式及三角函数的有界性.本题解答有两个关键:(1)利用向量共线的充要条件将向量问题转化为三角函数问题;(2)根据条件确定B角的范围.一般地,由于在三角函数中角是自变量,因此解决三角函数问题确定角的范围就显得至关重要了.题型三三角函数与平面向量垂直的综合此题型在高考中是一个热点问题,解答时与题型二的解法差不多,也是首先利用向量垂直的充要条件将向量问题转化为三角问题,再利用三角函数的相关知识进行求解.此类题型解答主要体现函数与方程的思想、转化的思想等.【例3】已知向量→a=(3sinα,cosα),→b=(2sinα,5sinα-4cosα),α∈(32,2π),且→a⊥→b.(Ⅰ)求tanα的值;(Ⅱ)求cos(α2+3)的值.【分析】第(Ⅰ)小题从向量垂直条件入手,建立关于α的三角方程,再利用同角三角函数的基本关系可求得tanα的值;第(Ⅱ)小题根据所求得的tanα的结果,利用二倍角公式求得tanα2的值,再利用两角和与差的三角公式求得最后的结果.-3-【解】(Ⅰ)∵→a⊥→b,∴→a·→b=0.而→a=(3sinα,cosα),→b=(2sinα,5sinα-4cosα),故→a·→b=6sin2α+5sinαcosα-4cos2α=0.由于cosα≠0,∴6tan2α+5tanα-4=0.解之,得tanα=-43,或tanα=12.∵α∈(32,2π),tanα<0,故tanα=12(舍去).∴tanα=-43.(Ⅱ)∵α∈(32,2π),∴α2∈(34,π).由tanα=-43,求得tanα2=-12,tanα2=2(舍去).∴sinα2=55,cosα2=-255,∴cos(α2+3)=cosα2cos3-sinα2sin3=-255×12-55×32=-25+1510【点评】本题主要考查向量垂直的充要条件、同角三角函数的基本关系、二倍角公式及两角和与差的三角函数.同时本题两个小题的解答都涉及到角的范围的确定,再一次说明了在解答三角函数问题中确定角的范围的重要性.同时还可以看到第(Ⅰ)小题的解答中用到“弦化切”的思想方法,这是解决在一道试题中同时出现“切函数与弦函数”关系问题常用方法.题型四三角函数与平面向量的模的综合此类题型主要是利用向量模的性质|→a|2=→a2,如果涉及到向量的坐标解答时可利用两种方法:(1)先进行向量运算,再代入向量的坐标进行求解;(2)先将向量的坐标代入向量的坐标,再利用向量的坐标运算进行求解.【例3】已知向量→a=(cosα,sinα),→b=(cosβ,sinβ),|→a-→b|=255.(Ⅰ)求cos(α-β)的值;(Ⅱ)若-2<β<0<α<2,且sinβ=-513,求sinα的值.【分析】利用向量的模的计算与数量积的坐标运算可解决第(Ⅰ)小题;而第(Ⅱ)小题则可变角α=(α-β)+β,然后就须求sin(α-β)与cosβ即可.【解】(Ⅰ)∵|→a-→b|=255,∴→a2-2→a·→b+→b2=45,将向量→a=(cosα,sinα),→b=(cosβ,sinβ)代入上式得12-2(cosαcosβ+sinαsinβ)+12=45,∴cos(α-β)=-35.(Ⅱ)∵-2<β<0<α<2,∴0<α-β<π,由cos(α-β)=-35,得sin(α-β)=45,又sinβ=-513,∴cosβ=1213,∴sinα=sin[(α-β)+β]=sin(α-β)cosβ+cos(α-β)sinβ=3365.点评:本题主要考查向量的模、数量积的坐标运算、和角公式、同角三角函数的基本关系.本题解答中要注意两点:(1)化|→a-→b|为向量运算|→a-→b|2=(→a-→b)2;(2)注意解α-β的-4-范围.整个解答过程体现方程的思想及转化的思想.题型五三角函数与平面向量数量积的综合此类题型主要表现为两种综合方式:(1)三角函数与向量的积直接联系;(2)利用三角函数与向量的夹角交汇,达到与数量积的综合.解答时也主要是利用向量首先进行转化,再利用三角函数知识求解.【例5】设函数f(x)=→a·→b.其中向量→a=(m,cosx),→b=(1+sinx,1),x∈R,且f(2)=2.(Ⅰ)求实数m的值;(Ⅱ)求函数f(x)的最小值.分析:利用向量内积公式的坐标形式,将题设条件中所涉及的向量内积转化为三角函数中的“数量关系”,从而,建立函数f(x)关系式,第(Ⅰ)小题直接利用条件f(2)=2可以求得,而第(Ⅱ)小题利用三角函数函数的有界性就可以求解.解:(Ⅰ)f(x)=→a·→b=m(1+sinx)+cosx,由f(2)=2,得m(1+sin2)+cos2=2,解得m=1.(Ⅱ)由(Ⅰ)得f(x)=sinx+cosx+1=2sin(x+4)+1,当sin(x+4)=-1时,f(x)的最小值为1-2.点评:平面向量与三角函数交汇点较多,向量的平行、垂直、夹角、数量积等知识都可以与三角函数进行交汇.不论是哪类向量知识与三角函数的交汇试题,其解法都差不多,首先都是利用向量的知识将条件转化为三角函数中的“数量关系”,再利用三角函数的相关知识进行求解.六、解斜三角形与向量的综合在三角形的正弦定理与余弦定理在教材中是利用向量知识来推导的,说明正弦定理、余弦定理与向量有着密切的联系.解斜三角形与向量的综合主要体现为以三角形的角对应的三角函数值为向量的坐标,要求根据向量的关系解答相关的问题.【例6】已知角A、B、C为△ABC的三个内角,其对边分别为a、b、c,若→m=(-cosA2,sinA2),→n=(cosA2,sinA2),a=23,且→m·→n=12.(Ⅰ)若△ABC的面积S=3,求b+c的值.(Ⅱ)求b+c的取值范围.【分析】第(Ⅰ)小题利用数量积公式建立关于角A的三角函数方程,再利用二倍角公式求得A角,然后通过三角形的面积公式及余弦定理建立关于b、c的方程组求取b+c的值;第(Ⅱ)小题正弦定理及三角形内角和定理建立关于B的三角函数式,进而求得b+c的范围.【解】(Ⅰ)∵→m=(-cosA2,sinA2),→n=(cosA2,sinA2),且→m·→n=12,∴-cos2A2+sin2A2=12,即-cosA=12,又A∈(0,π),∴A=23.又由S△ABC=12bcsinA=3,所以bc=4,20090318-5-由余弦定理得:a2=b2+c2-2bc·cos23=b2+c2+bc,∴16=(b+c)2,故b+c=4.(Ⅱ)由正弦定理得:bsinB=csinC=asinA=23sin23=4,又B+C=-A=3,∴b+c=4sinB+4sinC=4sinB+4sin(3-B)=4sin(B+3),∵0<B<3,则3<B+3<23,则32<sin(B+3)≤1,即b+c的取值范围是23,4.[点评]本题解答主要考查平面向量的数量积、三角恒等变换及三角形中的正弦定理、余弦定理、面积公式、三角形内角和定理等.解答本题主要有两处要注意:第(Ⅰ)小题中求b+c没有利用分别求出b、c的值为解,而是利用整体的思想,使问题得到简捷的解答;(2)第(Ⅱ)小题的求解中特别要注意确定角B的范围.