集合1.(2012浙江卷)设全集U={1,2,3,4,5,6},设集合P={1,2,3,4},Q={3,4,5},则P∩(CUQ)=()A.{1,2,3,4,6}B.{1,2,3,4,5}C.{1,2,5}D.{1,2}2.(2012湖北卷)已知集合2{|320,}AxxxxR,{|05,}BxxxN,则满足条件ACB的集合C的个数为()A.1B.2C.3D.43.(2012山东)已知全集{0,1,2,3,4}U,集合{1,2,3}A,{2,4}B,则()UABð为()A.{1,2,4}B.{2,3,4}C.{0,2,4}D.{0,2,3,4}4.(2012江苏)已知集合},2,0,1{},4,2,2,1{BA则_______,BA5.(2012江苏)设集合},,)2(2|),{(222RyxmyxmyxA,},,122|),{(RyxmyxmyxB,若,BA则实数m的取值范围是______________6.(2012福建)已知集合}4,3,2,1{M,}2,2{N,下列结论成立的是()A.MNB.MNMC.NNMD.}2{NM7.(2012安徽)设集合{3213}Axx,集合B是函数lg(1)yx的定义域;则AB()A.(1,2)B.[1,2]C.[,)D.(,]8.(2012北京)已知集合320AxRx,(1)(3)0BxRxx,则AB=()A.(,1)B.2(1,)3C.2(,3)3D.(3,)9(2012广东)设集合{1,2,3,4,5,6},{1,3,5}UM;则UCM()A.{,,}B.{1,3,5}C.{,,}D.U10(2012湖南)设集合M=1,0,1,N=2|xxx,则M∩N=()A.1,0,1B.0,1C.1D.011.(2012江西)若全集U={x∈R|x2≤4}A={x∈R||x+1|≤1}的补集UCA为A|x∈R|0<x<2|B|x∈R|0≤x<2|C|x∈R|0<x≤2|D|x∈R|0≤x≤2|12.(2012辽宁)已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则()()UUCACB=A.{5,8}B.{7,9}C.{0,1,3}D.{2,4,6}13.(2012陕西)集合{|lg0}Mxx,2{|4}Nxx,则MN()A.(12),B.[12),C.(12],D.[12],14.(2012上海)若集合}012|{xxA,}1|{xxB,则BA=.15.(2012四川)设集合{,}Aab,{,,}Bbcd,则AB()A、{}bB、{,,}bcdC、{,,}acdD、{,,,}abcd16.(2012新课标)已知集合A={x|x2-x-20},B={x|-1x1},则A.ABB.BAC.A=BD.A∩B=17.(2012重庆)不等式102xx的解集是为(A)(1,)(B)(,2)(C)(-2,1)(D)(,2)∪(1,)答案1.【答案】D【解析】Q{3,4,5},CUQ={1,2,6},P∩(CUQ)={1,2}.2.【答案】D【解析】:1,2,1,2,3,4AB,ACB,1,2C,则集合C的个数为422,故选D3.【答案】C4.【答案】-1,25.【答案】1,2+226.解答:}4,3,2,1,2{NM,}2{NM。7.【解析】选D{3213}[1,2]Axx,(1,)(1,2]BAB8.【答案】D【解析】2|3Axx,利用二次不等式的解法可得|31Bxxx或,画出数轴易得|3Axx。9.【解析】选A.UCM{,,}10.【答案】B【解析】0,1NM={-1,0,1}M∩N={0,1}11.【答案】C【解析】考查集合的基本运算{|22}Uxx,{|20}Axx,则{|02}UCAxx.12.【答案】B【解析一】因为全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},所以9,7,3,1,0,9,7,6,4,2BCACUU,所以)()(BCACUU{7,9}。故选B【解析二】集合)()(BCACUU即为在全集U中去掉集合A和集合B中的元素,所剩的元素形成的集合,由此可快速得到答案,选B13.【答案】C【解析】1xxM,22xxN,则21xxNM,故选C.14.【答案】1|12xx【解析】由集合A可得:x12,由集合B可得:-1x1,所以,BA=1|12xx15.【答案】D【解析】集合A中包含a,b两个元素,集合B中包含b,c,d三个元素,共有a,b,c,d四个元素,所以}{dcbaBA、、、16.【解析】A=(-1,2),故BA,故选B.17.【答案】:C【解析】:10(1)(2)0212xxxxx