12013—2014学年第一学期《高等数学(2-1)》期末考试A卷(工科类)参考答案及评分标准一.(共5小题,每小题3分,共计15分)判断下列命题是否正确?在题后的括号内打“√”或“”,如果正确,请给出证明,如果不正确请举一个反例进行说明.1.若)(xf在),(a无界,则)(limxfx.()-------------(1分)例如:xxxfsin)(,在),1(无界,但xxxsinlim.-------(2分)2.若)(xf在0x点连续,则)(xf在0x点必可导.()-------------(1分)例如:xxf)(,在0x点连续,但xxf)(在0x不可导.------(2分)3.若0limnnnyx,则0limnnx或.0limnny()--------------(1分)例如:,0,1,0,1:nx,1,0,1,0:ny有0limnnnyx,但nnxlim,nnylim都不存在.----------------------------(2分)4.若0)(0xf,则)(xf在0x点必取得极值.()-------------------(1分)例如:3)(xxf,0)0(f,但3)(xxf在0x点没有极值.---------(2分)5.若)(xf在],[ba有界,则)(xf在],[ba必可积.()-------------(1分)例如:.,0,1)(为无理数当为有理数,当xxxD,在]1,0[有界,但)(xD在]1,0[不可积.(2分)二.(共3小题,每小题7分,共计21分)1.指出函数xxxfcot)(的间断点,并判断其类型.解函数xxxfcot)(的间断点为:,2,1,0,kkx-------------------------------------------------------(3分)当,0k即0x时,,1sincoslimcotlim)(lim000xxxxxxfxxx0x为函数xxxfcot)(的第一类可去间断点;-----------------------(2分)2当,2,1,kkx时,,sincoslimcotlim)(limxxxxxxfkxkxkx),2,1(,kkx为函数xxxfcot)(的第二类无穷间断点.---------(2分)2.求极限xxtxdtetx022)1(1lim解xxtxdtetx022)1(1limxxtxexdtet202)1(lim-------------------(3分)xxxexxex)2()1(lim22-----------------------------------------------------------------(3分).121lim22xxxx---------------------------------------------------------------(1分)3.设方程)0,0(yxxyyx确定二阶可导函数)(xyy,求22dydx.解1对yxxy两边取对数,得xyyxln1ln1,即xxyylnln,--------------------------------------------------------------(2分)等式两边关于x求导,得:xdxdyyln1)ln1(,即yxdxdyln1ln1,-------(2分)dxdydxddxyd222)ln1(1)ln1()ln1(1ydxdyyxyx----------------------------(2分)322)ln1()ln1()ln1(yxyxxyy.------------------------------------------------(1分)解2对yxxy两边取对数,得xyyxln1ln1,-----------------(2分)等式两边关于x求导,xydxdyxydxdyyxyx11ln111ln122xxxyyyxydxdylnln22(直接再求导比较繁琐,需化简后再求导)-----------------------------------------------------------------------------------------(2分)3由xyyxln1ln1得xxyylnln,xxxyyyxydxdylnln22yxyxyxxyxylnlnyxln1ln1,以下同解1.三.(共3小题,每小题7分,共计21分)1.求不定积分dxxxx23sin1cossin.解)(sinsin1)sin1(sinsin1cossin2223xdxxxdxxxx------------------------(2分)(令txsin)=dtttt221)1(=dtttt212------------------(2分)Ctt)1ln(222=.)sin1ln(sin2122Cxx----------------(3分)2.设x2ln是函数)(xf的一个原函数,求dxxfx)(.解)(ln2)ln(2xfxxx,-------------------------------------------------(2分)Cxdxxf2ln)(,-------------------------------------------------------(2分))()(xdfxdxxfxdxxfxfx)()(.lnln22Cxx--------------------------------------------(3分)3.求定积分dxxxx)2cossin(74344.解dxxxx)2cossin(7434444743442cossindxxdxxx-------(1分)dxx2cos0744-------------------------------------------------------(2分)dxx2cos2740----------------------------------------------------------(2分)(令tx2)dtt720cos----------------------------------------------------------------(1分)4.!!7!!6---------------------------------------------------------------------------(1分)四.(共2小题,每小题6分,共计12分)1.已知一个长方形的长l以2cm/s的速度增加,宽w以3cm/s的速度增加,则当长为12cm,宽为5cm时,它的对角线的增加率是多少?解:设长方形的对角线为y,则222wly-----------------------------------(2分)两边关于t求导,得dtdwwdtdlldtdyy222,即dtdwwdtdlldtdyy------(1)--------------------------------(2分)已知,2dtdl,3dtdw,13512,5,1222ywl代入(1)式,得对角线的增加率:3dtdy(cm/s).--------------------------------------------------(2分)2.物体按规律2xct做直线运动,该物体所受阻力与速度平方成正比,比例系数为1,计算该物体由0x移至xa时克服阻力所做的功.解ctdtdxtv2)(-----------------------------------------------------------(2分)cxtctckxf444)(2222,--------------------------------------------------(2分)acxdxW04=22ca.------------------------------------------------------(2分)五.(本题10分)已知xxxfarctan5)(,试讨论函数的单调区间,极值,凹凸性,拐点,渐近线解函数的定义域为.),(22214151)(xxxxf,令0)(xf得驻点.2x-----------------------------------------------------------------------------------(1分),)1(10)(22xxxf令0)(xf,得可能拐点的横坐标:.0x--------(1分)列表讨论函数的单调区间,极值,凹凸性,拐点:5-----------------------------------------------------------------------------------------------------(6分),1)arctan51(lim)(lim1xxxxfaxx,25)arctan5(lim])([lim11xxaxfbxx,1)arctan51(lim)(lim2xxxxfaxx,25)arctan5(lim])([lim22xxaxfbxx渐近线为:.25xy----------------------------------------------------------------(2分)六.(共2小题,每小题7分,共计14分)1.试求曲线)0(2xexyx与x轴所夹的平面图形绕x轴旋转所得到的伸展到无穷远处的旋转体的体积.解:002dxxedxyVx------------------------------------------------------(4分)xxxexex)1(lim)1(001limxxex----------------------------------------------(3分)2.求微分方程xyyy2345的通解.解特征方程为:,0452rr特征根:.1,421rr-----------------(2分)对应齐次方程的通解为:.241xxeCeCy------------------------------(2分)而0不是特征根,可设非齐次方程的特解为BAxy*-----------------(1分)代入原方程可得,.811,21BA.8112*xy--------------------(1分)故所要求的通解为.8112241xeCeCyxx--------------------------------(1分))2,(2x)(xf)(xf)(xfy)0,0(拐点2)0,2(2arctan52极小值00)2,0(),2(02arctan52极大值06七.(本题7分)叙述罗尔)(Rolle中值定理,并用此定理证明:方程0cos2coscos21nxaxaxan在),0(内至少有一个实根,