116.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点:理解分式的基本性质.2.难点:灵活应用分式的基本性质将分式变形.三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.四、课堂引入1.请同学们考虑:与相等吗?与相等吗?为什么?2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.43201524983432015249832ab56,yx3,nm2,nm67,yx43。[分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变.解:ab56=ab56,yx3=yx3,nm2=nm2,nm67=nm67,yx43=yx43。六、随堂练习1.填空:(1)xxx3222=3x(2)32386bba=33a(3)cab1=cnan(4)222yxyx=yx2.约分:(1)cabba2263(2)2228mnnm(3)532164xyzyzx(4)xyyx3)(23.通分:(1)321ab和cba2252(2)xya2和23xb(3)223abc和28bca(4)11y和11y4.不改变分式的值,使下列分式的分子和分母都不含“-”号.(1)233abyx(2)2317ba(3)2135xa(4)mba2)(七、课后练习1.判断下列约分是否正确:(1)cbca=ba(2)22yxyx=yx1(3)nmnm=02.通分:(1)231ab和ba272(2)xxx21和xxx213.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号.(1)baba2(2)yxyx323八、答案:六、1.(1)2x(2)4b(3)bn+n(4)x+y2.(1)bca2(2)nm4(3)24zx(4)-2(x-y)23.通分:(1)321ab=cbaac32105,cba2252=cbab32104(2)xya2=yxax263,23xb=yxby262(3)223abc=223812cabc28bca=228cabab(4)11y=)1)(1(1yyy11y=)1)(1(1yyy4.(1)233abyx(2)2317ba(3)2135xa(4)mba2)(课后反思: