汽车构造总体介绍与参数介绍1.发动机:发动机2大机构5大系:曲柄连杆机构;配气机构;燃料供给系;冷却系;润滑系;点火系起动系2.底盘:底盘作用是支承、安装汽车发动机及其各部件、总成,形成汽车的整体造型,并接受发动机的动力,使汽车产生运动,保证正常行驶。底盘由传动系、行驶系、转向系和制动系四部分组成。3.车身:车身安装在底盘的车架上,用以驾驶员、旅客乘坐或装载货物。轿车、客车的车身一般是整体结构,货车车身一般是由驾驶室和货箱两部分组成。4.电气设备:电气设备由电源和用电设备两大部分组成。电源包括蓄电池和发电机;用电设备包括发动机的起动系、汽油机的点火系和其它用电装置。参数和性能参数1.整车装备质量(kg):汽车完全装备好的质量,包括润滑油、燃料、随车工具、备胎等所有装置的质量。2.最大总质量(kg):汽车满载时的总质量。3.最大装载质量(kg):汽车在道路上行驶时的最大装载质量。4.最大轴载质量(kg):汽车单轴所承载的最大总质量。与道路通过性有关。5.车长(mm):汽车长度方向两极端点间的距离。6.车宽(mm):汽车宽度方向两极端点间的距离。7.车高(mm):汽车最高点至地面间的距离。8.轴距(mm):汽车前轴中心至后轴中心的距离。9.轮距(mm):同一车轿左右轮胎胎面中心线间的距离。10.前悬(mm):汽车最前端至前轴中心的距离。11.后悬(mm):汽车最后端至后轴中心的距离。12.最小离地间隙(mm):汽车满载时,最低点至地面的距离。13.接近角(°):汽车前端突出点向前轮引的切线与地面的夹角。14.离去角(°):汽车后端突出点向后轮引的切线与地面的夹角。15.转弯半径(mm):汽车转向时,汽车外侧转向轮的中心平面在车辆支承平面上的轨迹圆半径。转向盘转到极限位置时的转弯半径为最小转弯半径。16.最高车速(km/h):汽车在平直道路上行驶时能达到的最大速度。17.最大爬坡度(%):汽车满载时的最大爬坡能力。18.平均燃料消耗量(L/100km):汽车在道路上行驶时每百公里平均燃料消耗量。19.车轮数和驱动轮数(n×m):车轮数以轮毂数为计量依据,n代表汽车的车轮总数,m代表驱动轮数。发动机分类及系统结构[图]一.分类内燃机的分类方法很多,按照不同的分类方法可以把内燃机分成不同的类型,下面让我们来看看内燃机是怎样分类的。(1)按照所用燃料分类内燃机按照所使用燃料的不同可以分为汽油机和柴油机。使用汽油为燃料的内燃机称为汽油机;使用柴油机为燃料的内燃机称为柴油机。汽油机与柴油机比较各有特点;汽油机转速高,质量小,噪音小,起动容易,制造成本低;柴油机压缩比大,热效率高,经济性能和排放性能都比汽油机好。(2)按照行程分类内燃机按照完成一个工作循环所需的行程数可分为四行程内燃机和二行程内燃机。把曲轴转两圈(720°),活塞在气缸内上下往复运动四个行程,完成一个工作循环的内燃机称为四行程内燃机;而把曲轴转一圈(360°),活塞在气缸内上下往复运动两个行程,完成一个工作循环的内燃机称为二行程内燃机。汽车发动机广泛使用四行程内燃机(3)按照冷却方式分类内燃机按照冷却方式不同可以分为水冷发动机和风冷发动机。水冷发动机是利用在气缸体和气缸盖冷却水套中进行循环的冷却液作为冷却介质进行冷却的;而风冷发动机是利用流动于气缸体与气缸盖外表面散热片之间的空气作为冷却介质进行冷却的。水冷发动机冷却均匀,工作可K,冷却效果好,被广泛地应用于现代车用发动机。(4)按照气缸数目分类内燃机按照气缸数目不同可以分为单缸发动机和多缸发动机。仅有一个气缸的发动机称为单缸发动机;有两个以上气缸的发动机称为多缸发动机。如双缸、三缸、四缸、五缸、六缸、八缸、十二缸等都是多缸发动机。现代车用发动机多采用四缸、六缸、八缸发动机。(5)按照气缸排列方式分类内燃机按照气缸排列方式不同可以分为单列式和双列式。单列式发动机的各个气缸排成一列,一般是垂直布置的,但为了降低高度,有时也把气缸布置成倾斜的甚至水平的;双列式发动机把气缸排成两列,两列之间的夹角180°(一般为90°)称为V型发动机,若两列之间的夹角=180°称为对置式发动机。(6)按照进气系统是否采用增压方式分类内燃机按照进气系统是否采用增压方式可以分为自然吸气(非增压)式发动机和强制进气(增压式)发动机。汽油机常采用自然吸气式;柴油机为了提高功率有采用增压式的。二.基本构造发动机是一种由许多机构和系统组成的复杂机器。无论是汽油机,还是柴油机;无论是四行程发动机,还是二行程发动机;无论是单缸发动机,还是多缸发动机。要完成能量转换,实现工作循环,保证长时间连续正常工作,都必须具备以下一些机构和系统。(1)曲柄连杆机构曲柄连杆机构是发动机实现工作循环,完成能量转换的主要运动零件。它由机体组、活塞连杆组和曲轴飞轮组等组成。在作功行程中,活塞承受燃气压力在气缸内作直线运动,通过连杆转换成曲轴的旋转运动,并从曲轴对外输出动力。而在进气、压缩和排气行程中,飞轮释放能量又把曲轴的旋转运动转化成活塞的直线运动。(2)配气机构配气机构的功用是根据发动机的工作顺序和工作过程,定时开启和关闭进气门和排气门,使可燃混合气或空气进入气缸,并使废气从气缸内排出,实现换气过程。配气机构大多采用顶置气门式配气机构,一般由气门组、气门传动组和气门驱动组组成。(3)燃料供给系统汽油机燃料供给系的功用是根据发动机的要求,配制出一定数量和浓度的混合气,供入气缸,并将燃烧后的废气从气缸内排出到大气中去;柴油机燃料供给系的功用是把柴油和空气分别供入气缸,在燃烧室内形成混合气并燃烧,最后将燃烧后的废气排出。(4)润滑系统润滑系的功用是向作相对运动的零件表面输送定量的清洁润滑油,以实现液体摩擦,减小摩擦阻力,减轻机件的磨损。并对零件表面进行清洗和冷却。润滑系通常由润滑油道、机油泵、机油滤清器和一些阀门等组成。润滑系的功用是向作相对运动的零件表面输送定量的清洁润滑油,以实现液体摩擦,减小摩擦阻力,减轻机件的磨损。并对零件表面进行清洗和冷却。润滑系通常由润滑油道、机油泵、机油滤清器和一些阀门等组成。(5)冷却系统冷却系的功用是将受热零件吸收的部分热量及时散发出去,保证发动机在最适宜的温度状态下工作。水冷发动机的冷却系通常由冷却水套、水泵、风扇、水箱、节温器等组成。(6)点火系统在汽油机中,气缸内的可燃混合气是K电火花点燃的,为此在汽油机的气缸盖上装有火花塞,火花塞头部伸入燃烧室内。能够按时在火花塞电极间产生电火花的全部设备称为点火系,点火系通常由蓄电池、发电机、分电器、点火线圈和火花塞等组成。(7)起动系统要使发动机由静止状态过渡到工作状态,必须先用外力转动发动机的曲轴,使活塞作往复运动,气缸内的可燃混合气燃烧膨胀作功,推动活塞向下运动使曲轴旋转。发动机才能自行运转,工作循环才能自动进行。因此,曲轴在外力作用下开始转动到发动机开始自动地怠速运转的全过程,称为发动机的起动。完成起动过程所需的装置,称为发动机的起动系。汽油机由以上两大机构和五大系统组成,即由曲柄连杆机构,配气机构、燃料供给系、润滑系、冷却系、点火系和起动系组成;柴油机由以上两大机构和四大系统组成,即由曲柄连杆机构、配气机构、燃料供给系、润滑系、冷却系和起动系组成,柴油机是压燃的,不需要点火系。汽车设计前言:技术参数的确定一、外形尺寸参数汽车设计中由设计师去弥定的外形尺寸包括:长、宽、高、轴距、轮距、前后悬长和离地距等。各参数的含义见下图:此主题相关图片如下:二、各级汽车的尺寸标准弥定汽车尺寸所要考虑的因素主要是机械布局和使用要求,其中机械布局视乎厂家各自的设计方案有所差异;使用要求则主要由汽车所针对的目标市场级别而定。下表为我根据经验总结的各主要级别(主要乘用车)的常见尺寸范围其中我们看到美国车的尺寸比欧、日的标准大很多,这主要是因为美国地大车少,油价低廉,对于汽车空间的要求远大于对省油性能的要求。日本则正好相反,为了改善道路拥挤情况,日本政府对汽车的税收等级是以外形尺寸(主要是占地面积长*宽)来划分的,车身越大使用费用越高。因此日本汽车造型设计所追求的是“空间利用率”,即在有限的车身尺寸下争取最大的内厢空间。可以说日本车造得紧凑的目的是为了符合法规;欧洲人也热衷于小型车,但他们造小车的主要目的是省油和使用方便;而美国人的生活环境决定了他们用不着把汽车造得太紧凑。三、如何弥定具体尺寸确定汽车尺寸首先要服从机械布局,然后要满足各项应有的功能,如必须具备载客、载货的空间等。下面详谈各尺寸的具体确定方法:1.长度长度是对汽车的用途、功能、使用方便性等影响最大的参数。因此一般以长度来划分车身等级。车身长意味着纵向可利用空间大,这是显而易见的;但太长的车身会给调头、停车造成不便。4米长与5米长的汽车在驾驶感觉上会有很大的差异,一般中小型乘用车长4米左右,接近5米长的可算作大型车了。2.宽度宽度主要影响乘坐空间和灵活性。对于乘用轿车,如果要求横向布置的三个坐位都有宽阔的乘坐感(主要是足够的肩宽),那么车宽一般都要达到1.8M。近年由于对安全性的要求,车门壁的厚度有所增加,因此车宽也普遍增加。日本车对宽度的限制比较严,大部分在1.8M以下,欧洲车则倾向增大车宽。但是车身太宽会降低在市区行走、停泊的方便性,因此对于轿车来说车宽2M是一个公认的上限。接近2米或超过2米的车都会很难驾驶。道路用车(大货车、大客车)的车宽一般也不能超过2.5米。对于车外倒后镜不能折叠的车辆,规格表上的宽度一般把外伸倒后镜也包括在内,因而有些欧洲轿车规格表上的宽度接近甚至超过2米(例如FIATMULTIPLA宽度为2010mm),各位明察即可。3.高度车身高度直接影响重心(操控性)和空间。大部分轿车高度在1.5米以下,与人体的自然坐姿高度相比低很多,主要是出于降低全车重心的考虑,以确保高速拐弯时不会翻车。MPV、面包车等为了营造宽阔的乘坐(头部空间)和载货空间,车身一般比较高(1.6米以上),但随之使整车重心升高,过弯时车身侧倾角度大;这是高车身车种的一个重大特性缺陷。此外在日本,香港等一些地区,大部分的室内停车场都有高度限制,一般为1.6米,这也是确定车高的重要考虑因素。小型车为了在有限的占地面积内扩大车厢空间,近年有向上发展的趋势,如丰田的YARIS(高1500mm)和标致206(1430mm),以及一批超过1.7M的日本K-CAR级RV(如铃木WAGONR),车身都比传统的小型车高出很多,重心升高导致的主动安全性下降是必然的。4.轴距在车长被确定后,轴距是影响乘坐空间最重要的因素,因为占绝大多数的2厢和3厢轿车,乘员的坐位都是布置在前后轴之间的。长轴距使乘员的纵向空间增大,直接得益的是对乘坐舒适性影响很大的脚部空间。在行驶性能方面,长轴距能提高直路巡航的稳定性,但转向灵活性下降,回旋半径增大。因此在稳定性和灵活性之间必须作出取舍,取得适当的平衡。5.前、后悬从图一可见:车长=前悬+后悬+轴距。所以轴距越长,前后悬便越短。最短的悬殊长可以短至只有车轮,即为车轮半径1/2。但除了一些小型车要竭力增加轴矩来扩大乘坐空间外,一般轿车的悬长都不能太短,一来轴矩太长会影响灵活性,二来要考虑机械零件的布局。例如前横置引擎前轮驱动的轿车,引擎一般会安置在前轴的前方,因此前悬必须有一定的长度(例一);但前悬也不应过长,以确保爬坡通过性,越野车为了保证爬坡、越台的能力,前悬都很短(例二);一些高性能跑车的前后悬取值主要是出于对前后重量平衡和动态重心转移的考虑(例三)。近年为了满足严格的正面撞击测试法规,有加长前悬的趋势,目的是容纳车架的撞击缓冲结构。后悬则可以比前悬稍长一些。此主题相关图片如下:例一前置引擎前轮驱动的轿车,因为要腾出空间安放引擎,前轴要向后移,形成很长的前悬。国产富康、夏利、桑塔纳都属于这种类型。此主题相关图片如下:例二图中的A、B角分别称为接近角和离去角,是衡量汽车通过性的重要指标。由图可见角度越大,车身能安全通过的坡度越大。其中接近角尤为重要,因此越野车的前悬都很短。此主题相关图片如下:例三悬长对汽车的动态表现也会有影响,例如增大前悬