2013全国中考数学试题分类汇编----锐角三角函数

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1/11(2013•郴州)计算:|﹣|+(2013﹣)0﹣()﹣1﹣2sin60°.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.3718684专题:计算题.分析:先分别根据0指数幂及负整数指数幂的计算法则,特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=2+1﹣3﹣2×=2+1﹣3﹣=﹣2.点评:本题考查的是实数的运算,熟知0指数幂及负整数指数幂的计算法则,特殊角的三角函数值是解答此题的关键.(2013,成都)计算1260sin2|3|)2(24(2013,成都)如图,ABC,,,为⊙O上相邻的三个n等分点,ABBC,点E在弧BC上,EF为⊙O的直径,将⊙O沿EF折叠,使点A与'A重合,连接'EB,EC,'EA.设'EBb,ECc,'EAp.先探究,,bcp三者的数量关系:发现当3n时,pbc.请继续探究,,bcp三者的数量关系:当4n时,p_______;当12n时,p_______.(参考数据:62sin15cos754oo,62cos15sin754oo)cb2,cb21322或cb226(2013•达州)计算:201212tan603解析:原式=1+23-3+9=10+3(2013•德州)cos30°的值是.(2013•广安)计算:()﹣1+|1﹣|﹣﹣2sin60°.22/11考点:实数的运算;负整数指数幂;特殊角的三角函数值.3718684分析:分别进行负整数指数幂、绝对值、开立方、特殊角的三角函数值等运算,然后按照实数的运算法则计算即可.解答:解:原式=2+﹣1+2﹣2×=3.点评:本题考查了实数的运算,涉及了负整数指数幂、绝对值、开立方、特殊角的三角函数值等知识,属于基础题.(2013•乐山)如图3,在平面直角坐标系中,点P(3,m)是第一象限内的点,且OP与x轴正半轴的夹角α的正切值为43,则sinα的值为A.45B.54C.35D.53(2013•乐山)如图6,已知第一象限内的点A在反比例函数y=2x的图象上,第二象限内的点B在反比例函数y=kx的图象上,且OA⊥0B,cotA=33,则k的值为A.-3B.-6C.-3D.-23(2013•泸州)如图,点E是矩形ABCD的边CD上一点,把ADE沿AE对折,点D的对称点F恰好落在BC一,已知折痕105AEcm,且3tan4EFC,那么该矩形的周长为A.72cmB.36cmC.20cmD.16cm(2013•内江)在△ABC中,已知∠C=90°,sinA+sinB=,则sinA﹣sinB=±.考点:互余两角三角函数的关系.分析:根据互余两角的三角函数关系,将sinA+sinB平方,把sin2A+cos2A=1,sinB=cosA代F第11题图ADEBC3/11入求出2sinAcosA的值,代入即可求解.解答:解:(sinA+sinB)2=()2,∵sinB=cosA,∴sin2A+cos2A+2sinAcosA=,∴2sinAcosA=﹣1=,则(sinA﹣sinB)2=sin2A+cos2A﹣2sinAcosA=1﹣=,∴sinA﹣sinB=±.故答案为:±.点评:本题考查了互余两角的三角函数关系,属于基础题,掌握互余两角三角函数的关系是解答本题的关键.(2013•自贡)如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的余弦值是.考点:圆周角定理;勾股定理;锐角三角函数的定义.3718684专题:网格型.分析:根据同弧所对的圆周角相等得到∠ABC=∠AED,在直角三角形ABC中,利用锐角三角函数定义求出cos∠ABC的值,即为cos∠AED的值.解答:解:∵∠AED与∠ABC都对,∴∠AED=∠ABC,在Rt△ABC中,AB=2,AC=1,根据勾股定理得:BC=,则cos∠AED=cos∠ABC==.故答案为:点评:此题考查了圆周角定理,锐角三角函数定义,以及勾股定理,熟练掌握圆周角定理是解本题的关键.(2013鞍山)△ABC中,∠C=90°,AB=8,cosA=,则BC的长.考点:锐角三角函数的定义;勾股定理.分析:首先利用余弦函数的定义求得AC的长,然后利用勾股定理即可求得BC的长.解答:解:∵cosA=,4/11∴AC=AB•cosA=8×=6,∴BC===2.故答案是:2.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.(2013•鄂州)如图,Rt△ABC中,∠A=90°,AD⊥BC于点D,若BD:CD=3:2,则tanB=()A.B.C.D.考点:相似三角形的判定与性质;锐角三角函数的定义.3718684分析:首先证明△ABD∽△ACD,然后根据BD:CD=3:2,设BD=3x,CD=2x,利用对应边成比例表示出AD的值,继而可得出tanB的值.解答:解:在Rt△ABC中,∵AD⊥BC于点D,∴∠ADB=∠CDA,∵∠B+∠BAD=90°,∠BAD+DAC=90°,∴∠B=∠DAC,∴△ABD∽△ACD,∴=,∵BD:CD=3:2,设BD=3x,CD=2x,∴AD==x,则tanB===.故选D.点评:本题考查了相似三角形的判定与性质及锐角三角函数的定义,难度一般,解答本题的关键是根据垂直证明三角形的相似,根据对应变成比例求边长.(2013•武汉)计算=.45cos5/11答案:解析:直接由特殊角的余弦值,得到。(2013•孝感)式子的值是()A.B.0C.D.2考点:特殊角的三角函数值.分析:将特殊角的三角函数值代入后,化简即可得出答案.解答:解:原式=2×﹣1﹣(﹣1)=﹣1﹣+1=0.故选B.点评:本题考查了特殊角的三角函数值,一些特殊角的三角函数值是需要我们熟练记忆的内容.(2013•龙岩)如图①,在矩形纸片ABCD中,.(1)如图②,将矩形纸片向上方翻折,使点D恰好落在AB边上的处,压平折痕交CD于点E,则折痕AE的长为_______________;(2)如图③,再将四边形沿向左翻折,压平后得四边形,交AE于点F,则四边形的面积为_______________;(3)如图④,将图②中的绕点E顺时针旋转角,得,使得恰好经过顶点B,求弧的长.(结果保留)(1)····························································································································4分(2)························································································································8分(3)∵∠C=,BC=,EC=1∴tan∠BEC==∴∠BEC=···················································································································9分由翻折可知:∠DEA=·······························································································10分∴=···························································································11分22313ABAD,=+=D¢BCED¢DE¢BCEDⅱ?BCⅱBFEDⅱAED¢DaAEDⅱ?DEA¢DD6132903BCCE3604575AEADED图①图②图③图④(第22题图)6/11∴l(2013•莆田)已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为.考点:互余两角三角函数的关系.分析:根据题意作出直角△ABC,然后根据sinA=,设一条直角边BC为5,斜边AB为13,根据勾股定理求出另一条直角边AC的长度,然后根据三角函数的定义可求出tnaB.解答:解:∵sinA=,∴设BC=5,AB=13,则AC==12,故tanB==.故答案为:.点评:本题考查了互余两角三角函数的关系,属于基础题,解题的关键是掌握三角函数的定义和勾股定理的运用.(2013•长春)如图,°,,AB=3,BD=2,则CD的长为B(A).(B).(C)2.(D)3.(2013•宿迁)如图,将AOB放置在55的正方形网格中,则tanAOB的值是A.23B.32C.21313D.3131375532336012第4题图AOB7/11(2013•淮安)sin30°的值为.考点:特殊角的三角函数值.3718684分析:根据特殊角的三角函数值计算即可.解答:解:sin30°=,故答案为.点评:本题考查了特殊角的三角函数值,应用中要熟记特殊角的三角函数值,一是按值的变化规律去记,正弦逐渐增大,余弦逐渐减小,正切逐渐增大;二是按特殊直角三角形中各边特殊值规律去记.(2013•南通)如图,正方形ABCD的边长为4,点M在边DC上,M、N两点关于对角线AC对称,若DM=1,则tan∠ADN=▲.(2013•钦州)计算:|﹣5|+(﹣1)2013+2sin30°﹣.考点:实数的运算;特殊角的三角函数值.3718684专题:计算题.分析:本题涉及绝对值、乘方、特殊角的三角函数值、二次根式化简等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=5﹣1+2×﹣5=﹣1+1=0.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握绝对值、乘方、特殊角的三角函数值、二次根式化简等考点的运算.(2013•包头)3tan30°的值等于()A.B.3C.D.考点:特殊角的三角函数值.分析:直接把tan30°=代入进行计算即可.解答:解:原式=3×=.故选A.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关A(第17题)BDMNC··8/11键.(2013•包头)如图,在三角形纸片ABC中,∠C=90°,AC=6,折叠该纸片,使点C落在AB边上的D点处,折痕BE与AC交于点E,若AD=BD,则折痕BE的长为4.考点:翻折变换(折叠问题).3718684专题:探究型.分析:先根据图形翻折变换的性质得出BC=BD,∠BDE=∠C=90°,再根据AD=BD可知AB=2BC,AE=BE,故∠A=30°,由锐角三角函数的定义可求出BC的长,设BE=x,则CE=6﹣x,在Rt△BCE中根据勾股定理即可得出BE的长.解答:解:∵△BDE△BCE反折而成,∴BC=BD,∠BDE=∠C=90°,∵AD=BD,∴AB=2BC,AE=BE,∴∠A=30°,在Rt△ABC中,∵AC=6,∴BC=AC•tan30°=6×=2,设BE=x,则CE=6﹣x,在Rt△BCE中,∵BC=2,BE=x,CE=6﹣x,∴BE2=CE2+BC2,即x2=(6﹣x)2+(2)2,解得x=4.故答案为:4.点评:本题考查的是图形的翻折变换,熟知图形反折不变性的性质是解答此题的关键.(2013•天津)tan60°的值等于()[来#%源@:~中教^网]A.1B.C.D.2考点:特殊角的三角函数值.分析:根据记忆的特殊角的三角函数值即可得出答案.解答:解:tan60°=.故选C.点评:本题考查了特殊角的三角函数值,一些特殊角的三角函数值是需要我们熟练记忆的内容.(2013•德州)cos30°的值是.考点:特殊角的三角函数值.分析:将特殊角的三角函数值代入计算即可.9/11解

1 / 11
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功