12013北京高考各区一模整理----概率题(13朝阳一模(16)(本小题满分13分)盒子中装有四张大小形状均相同的卡片,卡片上分别标有数字1,01,,2.称“从盒中随机抽取一张,记下卡片上的数字后并放回”为一次试验(设每次试验的结果互不影响).(Ⅰ)在一次试验中,求卡片上的数字为正数的概率;(Ⅱ)在四次试验中,求至少有两次卡片上的数字都为正数的概率;(Ⅲ)在两次试验中,记卡片上的数字分别为,,试求随机变量X=的分布列与数学期望EX.(13东城一模17)(本小题共13分)某班联欢会举行抽奖活动,现有六张分别标有1,2,3,4,5,6六个数字的形状相同的卡片,其中标有偶数数字的卡片是有奖卡片,且奖品个数与卡片上所标数字相同,游戏规则如下:每人每次不放回抽取一张,抽取两次.(Ⅰ)求所得奖品个数达到最大时的概率;(Ⅱ)记奖品个数为随机变量X,求X的分布列及数学期望.2(13西城一模16).(本小题满分13分)某班有甲、乙两个学习小组,两组的人数如下:现采用分层抽样的方法(层内采用简单随机抽样)从甲、乙两组中共抽取3名同学进行学业检测.(Ⅰ)求从甲组抽取的同学中恰有1名女同学的概率;(Ⅱ)记X为抽取的3名同学中男同学的人数,求随机变量X的分布列和数学期望.(13海淀一模16.(本小题满分13分)汽车租赁公司为了调查A,B两种车型的出租情况,现随机抽取了这两种车型各100辆汽车,分别统计了每辆车某个星期内的出租天数,统计数据如下表:A型车出租天数1234567车辆数51030351532B型车出租天数1234567车辆数1420201615105(I)从出租天数为3天的汽车(仅限A,B两种车型)中随机抽取一辆,估计这辆汽车恰好是A型车的概率;(Ⅱ)根据这个星期的统计数据,估计该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天的概率;(Ⅲ)如果两种车型每辆车每天出租获得的利润相同,该公司需要从A,B两种车型中购买一辆,请你根据所学的统计知识,给出建议应该购买哪一种车型,并说明你的理由.3(13丰台一模17.在一次抽奖活动中,有甲、乙等6人获得抽奖的机会。抽奖规则如下:主办方先从6人中随机抽取两人均获奖1000元,再从余下的4人中随机抽取1人获奖600元,最后还从这4人中随机抽取1人获奖400元。(Ⅰ)求甲和乙都不获奖的概率;(Ⅱ)设X是甲获奖的金额,求X的分布列和均值EX。(13石景山一模16(本小题满分13分)PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.石景山古城地区2013年2月6日至15日每天的PM2.5监测数据如茎叶图所示.(Ⅰ)小陈在此期间的某天曾经来此地旅游,求当天PM2.5日均监测数据未超标的概率;(Ⅱ)小王在此期间也有两天经过此地,这两天此地PM2.5监测数据均未超标.请计算出这两天空气质量恰好有一天为一级的概率;(Ⅲ)从所给10天的数据中任意抽取三天数据,记表示抽到PM2.5监测数据超标的天数,求的分布列及期望.PM2.5日均值(微克/立方米)216375960385610474(13朝阳二模17)(本小题满分13分)为提高学生学习数学的兴趣,某地区举办了小学生“数独比赛”.比赛成绩共有90分,70分,60分,40分,30分五种,按本次比赛成绩共分五个等级.从参加比赛的学生中随机抽取了30名学生,并把他们的比赛成绩按这五个等级进行了统计,得到如下数据表:成绩等级ABCDE成绩(分)9070604030人数(名)461073(Ⅰ)根据上面的统计数据,试估计从本地区参加“数独比赛”的小学生中任意抽取一人,其成绩等级为“A或B”的概率;(Ⅱ)根据(Ⅰ)的结论,若从该地区参加“数独比赛”的小学生(参赛人数很多)中任选3人,记X表示抽到成绩等级为“A或B”的学生人数,求X的分布列及其数学期望EX;(Ⅲ)从这30名学生中,随机选取2人,求“这两个人的成绩之差大于20分”的概率.(13海淀二模16.(本小题满分13分)福彩中心发行彩票的目的是为了获取资金资助福利事业,现在福彩中心准备发行一种面值为5元的福利彩票刮刮卡,设计方案如下:(1)该福利彩票中奖率为50%;(2)每张中奖彩票的中奖奖金有5元,50元和150元三种;(3)顾客购买一张彩票获得150元奖金的概率为p,获得50元奖金的概率为2%.(Ⅰ)假设某顾客一次性花10元购买两张彩票,求其至少有一张彩票中奖的概率;(Ⅱ)为了能够筹得资金资助福利事业,求p的取值范围.5(13东城二模(本小题共13分)某校高三年级同学进行体育测试,测试成绩分为优秀、良好、合格三个等级.测试结果如下表:(单位:人)优秀良好合格男1807020女120a30按优秀、良好、合格三个等级分层,从中抽取50人,其中成绩为优的有30人.⑴求a的值;⑵若用分层抽样的方法,在合格的同学中按男女抽取一个容量为5的样本,从中任选2人,记X为抽取女生的人数,求X的分布列及数学期望.(13西城二模16.(本小题满分13分)某超市在节日期间进行有奖促销,凡在该超市购物满300元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回的每次摸出1个球,若摸到黑球则停止摸奖,否则就要将奖盒中的球全部摸出才停止.规定摸到红球奖励10元,摸到白球或黄球奖励5元,摸到黑球不奖励.(Ⅰ)求1名顾客摸球3次停止摸奖的概率;(Ⅱ)记X为1名顾客摸奖获得的奖金数额,求随机变量X的分布列和数学期望.6(13丰台二模16(本小题13分)国家对空气质量的分级规定如下表:污染指数0~5051~100101~150151~200201~300300空气质量优良轻度污染中度污染重度污染严重污染某市去年6月份30天的空气污染指数的监测数据如下:3414018731212104045782365792078160421013816315422273615149103135201648根据以上信息,解决下列问题:(Ⅰ)写出下面频率分布表中a,b,x,y的值;(Ⅱ)某人计划今年6月份到此城市观光4天,若将(Ⅰ)中的频率作为概率,他遇到空气质量为优或良的天数用X表示,求X的分布列和均值EX.频率分布表分组频数频率[0,50]14157(50,100]ax(100,150]561(150,200]by(200,250]2151合计301