第1页(共19页)2015年上海市高考数学试卷(理科)一、填空题(本大题共有14题,满分48分.)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对4分,否则一律得零分.1.(4分)(2015•上海)设全集U=R.若集合Α={1,2,3,4},Β={x|2≤x≤3},则Α∩∁UΒ=.2.(4分)(2015•上海)若复数z满足3z+=1+i,其中i是虚数单位,则z=.3.(4分)(2015•上海)若线性方程组的增广矩阵为解为,则c1﹣c2=.4.(4分)(2015•上海)若正三棱柱的所有棱长均为a,且其体积为16,则a=.5.(4分)(2015•上海)抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,则p=.6.(4分)(2015•上海)若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为.7.(4分)(2015•上海)方程log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2的解为.8.(4分)(2015•上海)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为(结果用数值表示).9.(2015•上海)已知点P和Q的横坐标相同,P的纵坐标是Q的纵坐标的2倍,P和Q的轨迹分别为双曲线C1和C2.若C1的渐近线方程为y=±x,则C2的渐近线方程为.10.(4分)(2015•上海)设f﹣1(x)为f(x)=2x﹣2+,x∈[0,2]的反函数,则y=f(x)+f﹣1(x)的最大值为.11.(4分)(2015•上海)在(1+x+)10的展开式中,x2项的系数为(结果用数值表示).12.(4分)(2015•上海)赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若第2页(共19页)随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则Eξ1﹣Eξ2=(元).13.(4分)(2015•上海)已知函数f(x)=sinx.若存在x1,x2,…,xm满足0≤x1<x2<…<xm≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(xm﹣1)﹣f(xm)|=12(m≥12,m∈N*),则m的最小值为.14.(2015•上海)在锐角三角形ABC中,tanA=,D为边BC上的点,△ABD与△ACD的面积分别为2和4.过D作DE⊥AB于E,DF⊥AC于F,则•=.二、选择题(本大题共有4题,满分15分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)(2015•上海)设z1,z2∈C,则“z1、z2中至少有一个数是虚数”是“z1﹣z2是虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件16.(5分)(2015•上海)已知点A的坐标为(4,1),将OA绕坐标原点O逆时针旋转至OB,则点B的纵坐标为()A.B.C.D.17.(2015•上海)记方程①:x2+a1x+1=0,方程②:x2+a2x+2=0,方程③:x2+a3x+4=0,其中a1,a2,a3是正实数.当a1,a2,a3成等比数列时,下列选项中,能推出方程③无实根的是()A.方程①有实根,且②有实根B.方程①有实根,且②无实根C.方程①无实根,且②有实根D.方程①无实根,且②无实根18.(5分)(2015•上海)设Pn(xn,yn)是直线2x﹣y=(n∈N*)与圆x2+y2=2在第一象限的交点,则极限=()A.﹣1B.﹣C.1D.2三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.第3页(共19页)19.(12分)(2015•上海)如图,在长方体ABCD﹣A1B1C1D1中,AA1=1,AB=AD=2,E、F分别是AB、BC的中点,证明A1、C1、F、E四点共面,并求直线CD1与平面A1C1FE所成的角的大小.20.(14分)(2015•上海)如图,A,B,C三地有直道相通,AB=5千米,AC=3千米,BC=4千米.现甲、乙两警员同时从A地出发匀速前往B地,经过t小时,他们之间的距离为f(t)(单位:千米).甲的路线是AB,速度为5千米/小时,乙的路线是ACB,速度为8千米/小时.乙到达B地后原地等待.设t=t1时乙到达C地.(1)求t1与f(t1)的值;(2)已知警员的对讲机的有效通话距离是3千米.当t1≤t≤1时,求f(t)的表达式,并判断f(t)在[t1,1]上的最大值是否超过3?说明理由.21.(14分)(2015•上海)已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别于椭圆交于A、B和C、D,记得到的平行四边形ABCD的面积为S.(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=2|x1y2﹣x2y1|;(2)设l1与l2的斜率之积为﹣,求面积S的值.22.(16分)(2015•上海)已知数列{an}与{bn}满足an+1﹣an=2(bn+1﹣bn),n∈N*.(1)若bn=3n+5,且a1=1,求数列{an}的通项公式;(2)设{an}的第n0项是最大项,即a≥an(n∈N*),求证:数列{bn}的第n0项是最大项;(3)设a1=λ<0,bn=λn(n∈N*),求λ的取值范围,使得{an}有最大值M与最小值m,且∈(﹣2,2).23.(18分)(2015•上海)对于定义域为R的函数g(x),若存在正常数T,使得cosg(x)是以T为周期的函数,则称g(x)为余弦周期函数,且称T为其余弦周期.已知f(x)是以T为余弦周期的余弦周期函数,其值域为R.设f(x)单调递增,f(0)=0,f(T)=4π.(1)验证g(x)=x+sin是以6π为周期的余弦周期函数;(2)设a<b,证明对任意c∈[f(a),f(b)],存在x0∈[a,b],使得f(x0)=c;第4页(共19页)(3)证明:“u0为方程cosf(x)=1在[0,T]上得解,”的充分条件是“u0+T为方程cosf(x)=1在区间[T,2T]上的解”,并证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T).第5页(共19页)2015年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(本大题共有14题,满分48分.)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对4分,否则一律得零分.1.(4分)(2015•上海)设全集U=R.若集合Α={1,2,3,4},Β={x|2≤x≤3},则Α∩∁UΒ={1,4}.考点:交、并、补集的混合运算.菁优网版权所有专题:集合.分析:本题考查集合的运算,由于两个集合已经化简,故直接运算得出答案即可.解答:解:∵全集U=R,集合Α={1,2,3,4},Β={x|2≤x≤3},∴(∁UB)={x|x>3或x<2},∴A∩(∁UB)={1,4},故答案为:{1,4}.点评:本题考查集合的交、并、补的混合运算,熟练掌握集合的交并补的运算规则是解本题的关键.本题考查了推理判断的能力.2.(4分)(2015•上海)若复数z满足3z+=1+i,其中i是虚数单位,则z=.考点:复数代数形式的乘除运算.菁优网版权所有专题:数系的扩充和复数.分析:设z=a+bi,则=a﹣bi(a,b∈R),利用复数的运算法则、复数相等即可得出.解答:解:设z=a+bi,则=a﹣bi(a,b∈R),又3z+=1+i,∴3(a+bi)+(a﹣bi)=1+i,化为4a+2bi=1+i,∴4a=1,2b=1,解得a=,b=.∴z=.故答案为:.点评:本题考查了复数的运算法则、复数相等,属于基础题.3.(4分)(2015•上海)若线性方程组的增广矩阵为解为,则c1﹣c2=16.考点:二阶行列式与逆矩阵.菁优网版权所有第6页(共19页)专题:矩阵和变换.分析:根据增广矩阵的定义得到,是方程组的解,解方程组即可.解答:解:由题意知,是方程组的解,即,则c1﹣c2=21﹣5=16,故答案为:16.点评:本题主要考查增广矩阵的求解,根据条件建立方程组关系是解决本题的关键.4.(4分)(2015•上海)若正三棱柱的所有棱长均为a,且其体积为16,则a=4.考点:棱锥的结构特征.菁优网版权所有专题:空间位置关系与距离.分析:由题意可得(•a•a•sin60°)•a=16,由此求得a的值.解答:解:由题意可得,正棱柱的底面是变长等于a的等边三角形,面积为•a•a•sin60°,正棱柱的高为a,∴(•a•a•sin60°)•a=16,∴a=4,故答案为:4.点评:本题主要考查正棱柱的定义以及体积公式,属于基础题.5.(4分)(2015•上海)抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,则p=2.考点:抛物线的简单性质.菁优网版权所有专题:计算题;圆锥曲线的定义、性质与方程.分析:利用抛物线的顶点到焦点的距离最小,即可得出结论.解答:解:因为抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,所以=1,所以p=2.故答案为:2.点评:本题考查抛物线的方程与性质,考查学生的计算能力,比较基础.6.(4分)(2015•上海)若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为.第7页(共19页)考点:旋转体(圆柱、圆锥、圆台).菁优网版权所有专题:空间位置关系与距离.分析:设圆锥的底面半径为r,高为h,母线长为l,由已知中圆锥的侧面积与过轴的截面面积之比为2π,可得l=2h,进而可得其母线与轴的夹角的余弦值,进而得到答案.解答:解:设圆锥的底面半径为r,高为h,母线长为l,则圆锥的侧面积为:πrl,过轴的截面面积为:rh,∵圆锥的侧面积与过轴的截面面积之比为2π,∴l=2h,设母线与轴的夹角为θ,则cosθ==,故θ=,故答案为:.点评:本题考查的知识点是旋转体,其中根据已知求出圆锥的母线与轴的夹角的余弦值,是解答的关键.7.(4分)(2015•上海)方程log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2的解为2.考点:对数的运算性质.菁优网版权所有专题:函数的性质及应用.分析:利用对数的运算性质化为指数类型方程,解出并验证即可.解答:解:∵log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2,∴log2(9x﹣1﹣5)=log2[4×(3x﹣1﹣2)],∴9x﹣1﹣5=4(3x﹣1﹣2),化为(3x)2﹣12•3x+27=0,因式分解为:(3x﹣3)(3x﹣9)=0,∴3x=3,3x=9,解得x=1或2.经过验证:x=1不满足条件,舍去.∴x=2.故答案为:2.点评:本题考查了对数的运算性质及指数运算性质及其方程的解法,考查了计算能力,属于基础题.8.(4分)(2015•上海)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为120(结果用数值表示).考点:排列、组合的实际应用.菁优网版权所有专题:计算题;排列组合.分析:根据题意,运用排除法分析,先在9名老师中选取5人,参加义务献血,由组合数公式可得其选法数目,再排除其中只有女教师的情况;即可得答案.解答:解:根据题意,报名的有3名男老师和6名女教师,共9名老师,第8页(共19页)在9名老师中选取5人,参加义务献血,有C95=126种;其中只有女教师的有C65=6种情况;则男、女教师都有的选取方式的种数为126﹣6=120种;故答案为:120.点评:本题考查排列、组合的运用,本题适宜用排除法(间接法),可以避免分类讨论,简化计算.9.(2015•上海)已知点P和Q的横坐标相同,P的纵坐标是Q的纵坐标的2倍,P和Q的轨迹分别为双曲线C1和C2.若C1的渐近线方程为y=±x,则C2的渐近线方程为.考点:双曲线的简单性质.菁优网版权所有专题:计算题;圆锥曲线的定义、性质与方程.分析:设C1的方程为y