课题:分形几何(上)【教学目标】分形几何的发现和发展【教学重点】分形几何的特点【教学过程】引入:分形几何学是一门以不规则几何形态为研究对象的几何学。相对于传统几何学的研究对象为整数维数,如,零维的点、一维的线、二维的面、三维的立体乃至四维的时空。分形几何学的研究对象为分数维数,如0.63、1.58、2.72。因为它的研究对象普遍存在于自然界中,因此分形几何学又被称为“大自然的几何学”。一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统。分形有几种类型,可以分别依据表现出的精确自相似性、半自相似性和统计自相似性来定义。虽然分形是一个数学构造,它们同样可以在自然界中被找到,这使得它们被划入艺术作品的范畴。分形在医学、土力学、地震学和技术分析中都有应用。一、分形几何的由来分形(英语:Fractal),又称碎形,通常被定义为“一个粗糙或零碎的几何形状,可以分成数个部分,且每一部分都(至少近似地)是整体缩小后的形状”,即具有自相似的性质。分形思想的根源可以追溯到公元17世纪,而对分形使用严格的数学处理则始于一个世纪后卡尔·魏尔施特拉斯、格奥尔格·康托尔和费利克斯·豪斯多夫对连续而不可微函数的研究。但是分形(fractal)一词直到1975年才由本华·曼德布劳恩特创造出,来自拉丁文frāctus,有“零碎”、“破裂”之意。一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统。分形有几种类型,可以分别依据表现出的精确自相似性、半自相似性和统计自相似性来定义。虽然分形是一个数学构造,它们同样可以在自然界中被找到,这使得它们被划入艺术作品的范畴。分形在医学、土力学、地震学和技术分析中都有应用。二、分形的特征分形一般有以下特质:在任意小的尺度上都能有精细的结构;太不规则,以至无论是其整体或局部都难以用传统欧氏几何的语言来描述;具有(至少是近似的或统计的)自相似形式;一般地,其“分形维数”(通常为豪斯多夫维数)会大于拓扑维数(但在空间填充曲线如希尔伯特曲线中为例外);在多数情况下有着简单的递归定义。因为分形在所有的大小尺度下都显得相似,所以通常被认为是无限复杂的(以不严谨的用词来说)。自然界里一定程度上类似分形的事物有云、山脉、闪电、海岸线、雪片、植物根、多种蔬菜(如花椰菜和西兰花)和动物的毛皮的图案等等。但是,并不是所有自相似的东西都是分形,如实直线虽然在形式上是自相似的,但却不符合分形的其他特质,比如说它能被传统的欧氏几何语言所描述。分形的图像可以用分形生成软件作出。尽管用此类软件生成的图像并不具备上述分形的特征,比如说存在放大后无上述特征的局部区域,但是这些图像通常仍然被称为分形。而且这些图像可能含有由计算或显示造成的人为偏差——一些不属于分形的特征.四、历史17世纪时,数学家兼哲学家莱布尼茨思考过递归的自相似,分形的数学从那时开始渐渐地成形(虽然他误认只有直线会自相似)。直到1872年,卡尔·魏尔施特拉斯才给出一个具有处处连续但处处不可微这种非直观性质的函数例子,其图像在现今被认为是分形。1904年,海里格·冯·科赫不满意魏尔施特拉斯那抽象且解析的定义,用更加几何化的定义给出一个类似的函数,今日称之为科赫雪花。1915年瓦茨瓦夫·谢尔宾斯基造出了谢尔宾斯基三角形;隔年,又造出了谢尔宾斯基地毯。1938年,保罗·皮埃尔·莱维在他的论文《PlaneorSpaceCurvesandSurfacesConsistingofPartsSimilartotheWhole》中将自相似曲线的概念更进一步地推进,他在文中描述了一个新的分形曲线-莱维C形曲线。格奥尔格·康托尔也给出一个具有不寻常性质的实直线上的子集-康托尔集,今日也被认为是分形。复平面的迭代函数在19世纪末20世纪初被儒勒·昂利·庞加莱、菲利克斯·克莱因、皮埃尔·法图和加斯东·茹利亚等人所研究,但直到现在有电脑绘图的帮忙,许多他们所发现的函数才显现出其美丽来。1960年代,本华·曼德布劳恩特开始研究自相似,且在路易斯·弗莱·理查德森之前工作的基础上,写下一篇论文《英国的海岸线有多长?统计自相似和分数维度》。最终,曼德布劳恩特在1975年提出了“分形”一词,来标记一个豪斯多夫-贝西科维奇维数大于拓扑维数的物件。曼德布劳恩特以显著的电脑绘制图像来描绘此一数学定义,这些图像征服了大众的想像;它们中许多都基于递归,导致了大众对术语“分形”的通俗理解。左:朱利亚集,一个与曼德布劳恩特集有关的分形。右:MandelbrotSET曼德布劳恩特集合