2011江津中考数学试题及答案题号一二三总分得分一、填空题(本大题共6小题,每小题3分,共18分)1.|31|=.2.函数y=2x的自变量取值范围是.3.观察下列各式:12×2=12+2,23×3=23+3,34×4=34+4,45×5=45+5…想一想,什么样的两数之积等于这两数之和?设n表示正整数,用关于n的等式表示这个规律为.4.如果反比例函数y=xk的图象经过点P(-3,1)那么k=.5.如果一个角的补角是120°,那么这个角的余角是.6.如图:AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则∠1=72°,则∠2=.二、选择题(本大题共8个小题,每小题4分,满分32分)7.下列计算正确的是()A.(-4x2)(2x2+3x-1)=-8x4-12x2-4xB.(x+y)(x2+y2)=x3+y3C.(-4a-1)(4a-1)=1-16a2D.(x-2y)2=x2-2xy+4y28.把x2-1+2xy+y2的分解因式的结果是()A.(x+1)(x-1)+y(2x+y)B.(x+y+1)(x-y-1)C.(x-y+1)(x-y-1)D.(x+y+1)(x+y-1)9.已知关于x的方程x2-2x+k=0有实数根,则k的取值范围是()A.k<1B.k≤1C.k≤-1D.k≥110.某电视台举办的通俗歌曲比赛上,六位评委给1号选手的评分如下:909691969594这组数据的众数和中位数分别是()A.94.5,95B.95,95C.96,94.5D.2,9611.面积为2的△ABC,一边长为x,这边上的高为y,则y与x的变化规律用图象表示大致是()得分评卷人得分评卷人ABCD12.有如下结论(1)有两边及一角对应相等的两个三角形全等;(2)菱形既是轴对称图形又是中心对称图形;(3)对角线相等的四边形是矩形;(4)平分弦的直径垂直于弦,并且平分弦所对的两条弧;(5)两圆的公切线最多有4条,其中正确结论的个数为()A.1个B.2个C.3个D.4个13.已知:如图梯形ABCD中,AD∥BC,AB=DC,AC与BD相交于点O,那么图中全等三角形共有()对.A.1对B.2对C.3对D.4对14.如图四边形ABCD内接于⊙O,若∠BOD=100°,则∠DAB=()A.50°B.80°C.100°D.130°三、解答题(本大题共7个小题,共70分)15.(本小题6分)计算:18+1212-481得分评卷人16.(本小题7分)解方程:3212x-8x2+12=017.(6分)某中学团委到位于A市南偏东60°方向50海里的B基地慰问驻车,然后乘船前往位于B基地正西方向的C哨所看望值班战士,C哨所位于A市的南偏西43°方向,求C到A的距离(精确到1海里,以下数据供选用sin43°≈0.68,cos43°≈0.73)得分评卷人得分评卷人18.(4分)平原上有A、B、C、D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池,不考虑其它因素,请你画图确定蓄水池H点的位置,使它与四个村庄的距离之和最小.(不作证明)19.(本小题5分)阅读材料,解答问题:如图,在锐角△ABC中,BC=a,CA=b,AB=c,△ABC的外接圆的半径为R,则Aasin=Bbsin=Ccsin=2R证明:连结CO并延长交⊙O的直径,∴∠DBC=90°,在Rt△DBC中,∵sinD=DCBC=Ra2,∴sinA=sinD=Ra2∴Aasin=2R同理Bbsin=2R,Ccsin=2R前面的阅读材料中略去Bbsin=2R,Ccsin=2R的证明过程,请你把BCcsin=2R的证明过程补写出来.得分评卷人得分评卷人20.(12分)某图书馆开展两种方式的租书业务,一种是使用会员卡,另一种是使用租书卡,使用这两种卡租书,租书金额y(元)与租书时间x(天)之间的关系如下图所示.(1)分别求出用租书卡和会员卡租书的金额y(元)与租书时间x(天)之间的函数关系式.(2)两种租书方式每天租书的收费分别是多少元?(x≤100)21.(8分)某校师生去外地参加夏令营活动,车站提出两种车票价格的优惠方案供学校选择.第一种方案是教师按原价付款,学生按原价的78%付款;第二种方案是师生都按原价的80%付款;该校有5名教师参加这项活动,试根据夏令营的学生人数选择购票付款的最佳方案?得分评卷人得分评卷人22.(8分)初三(几何)课本中有这样的一道习题,若⊙O1与⊙O2外切于点A,BC是两圆的一条外公切线,B、C为切点,则AB⊥AC(1)若⊙O1和⊙O2外离,BC为两圆的外公切线,B,C为切点,连心线O1O2分别交⊙O1,⊙O2于M,N,设BM与CN的延长线交于A,试问AB与AC是否垂直?证明你的结论.(2)若⊙O1与⊙O2相交,AB与AC垂直吗?得分评卷人23.(14分)函数y=-43x-12的图象分别交x轴,y轴于A,C两点,(1)求出A、C两点的坐标.(2)在x轴上找出点B,使△ACB~△AOC,若抛物线经过A、B、C三点,求出抛物线的解析式.(3)在(2)的条件下,设动点P、Q分别从A、B两点同时出发,以相同的速度沿AC、BA向C、A运动,连结PQ,设AP=m,是否存在m值,使以A、P、Q为顶点的三角形与△ABC相似,若存在,求出所有的m值;若不存在,请说明理由.得分评卷人参考答案一、1.312.x≥23.nn1(n+1)=nn1+(n+1)4.-35.30°6.54°二、7.C8.D9.B10.C11.C12.B13.C14.D三、15.解:原式=32+3-22············································4分=3·····························································6分16.解:设2x2-3=y,则原方程变形为y1-4y=0·····························1分整理得1-4y2=0解这个方程得,y1=21,y2=-21·················································3分当y1=21时,2x2-3=21,解得:x=±27··································4分当y2=-21时,2x2-3=-21,解得:x=±25································5分经检验知,它们都是原方程的根.所以原方程的根是:x=±27,x=±25·································7分17.解:过A作AD⊥BC于D,············································1分在Rt△ADB中,∠DAB=60°,AB=50海里,AD=ABcos60°=25(海里)·······················································································3分在Rt△ADC中,cos43°=AC25,AC=73.025≈34(海里)···········5分答:C到A的距离约是34海里.18.作法:连结AC与BD交点为H点,则H点即为所求的点.······4分19.连结BO并延长交⊙O于E,连结EA,则∠ACB=∠E············1分∵BE是⊙O的直径,∴∠BAE=90°·····································································2分在Rt△ABE中,sinE=BEAB=Rc2·············································3分∴sin∠ACB=sinE=Rc2··························································4分∴ACBcsin=2R·························································································5分20.解:(1)租书卡:设y=kx································································1分观察图象知,当x=100时,y=50,∴100k=50,解得k=21∴y=21x···········································3分用会员卡时,设y=kx+b·························································4分∵(0,20),(100,50)在直线y=kx+b上,∴201003501002020bkbkbb,解得·······························6分∴y=1003x+20(2)用租书卡的方式租书,每天租书的收费为50÷100=0.5(元)··9分用会员卡的方式租书,每天租书的收费为(50-20)÷100=0.3(元)························································································11分答:略.··············································································12分21.解:设参加夏令营活动的学生x人,每张车票的原价为a元,按第一种方案购票应付款y1元,按第二种方案购票应付款y2元,依题意得:···············1分y1=5a+a×78%·xy2=(x+5)·a·80%······································4分(1)当y2>y1时,(x+5)·a·80%>5a+a×78%·x解得x>50··5分(2)当y2=y1时,(x+5)·a·80%=5a+a×78%·x解得x=50········6分(3)当y2<y1时,(x+5)·a·80%<5a+a×78%x解得x<50·······7分答:当学生多于50人时,按第一种方案,当学生等于50人时,两种方案都可以,当学生少于50人时,按第二种方案.···············································8分22.解:(1)猜想:AB⊥AC··················································1分证明:分别连结O1B、O2C,··················································2分则O1B⊥BCO2C⊥BC,从而O1B∥O2C··································4分∴∠BO1O2+∠CO2O=180°·····················································5分∵∠ABC+∠ACB=21∠BO1O2+21∠CO2O1=90°·························6分∴∠BAC=90°即AB⊥AC······················································7分(2)亦有AB⊥AC,证明与(1)类似,略.·······························8分23.(1)A(-16,0)C(0,-12)··········································2分(2)过C作CB⊥AC,交x轴于点B,显然,点B为所求,·········3分则OC2=OA×OB此时OB=9,可求得B(9,