汽车理论

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

汽车理论汽车理论是研究汽车主要使用性能的科学,是在分析汽车运动基本规律的基础上研究汽车主要使用性能与其结构之间的内在联系,分析汽车主要使用性能的各种影响因素,从而指出正确设计汽车和合理使用汽车的基本途径。对汽车提出的使用性能的要求是多方面的,汽车理论主要研究汽车的动力性、燃油经济性、制动性、操纵稳定性、平顺性和通过性等。第8章汽车的动力性学习目标通过本章的学习,应重点掌握汽车的动力性指标,熟练分析汽车的受力情况,深入理解汽车的行驶方程式,并熟练运用汽车的力平衡图和功率平衡图分析汽车的动力性指标。汽车的动力性是指汽车在良好路面上直线行驶时,由汽车受到的纵向外力决定的、所能达到的平均行驶速度。汽车是一种高效率的运输工具,运输效率之高低很大程度上取决于汽车的动力性。所以,动力性是汽车各种性能中最基本最重要的性能。1.1节汽车动力性指标从获得尽可能高的平均行驶速度的观点出发,汽车的动力性主要有以下三个评价指标。1.1.1汽车的最高车速最高车速是指在水平良好的路面(混凝土或沥青)上,汽车能达到的最高行驶车速。1.1.2汽车的加速时间汽车的加速时间表示汽车的加速能力,它对平均行驶车速有很大影响。常用原地起步加速时间与超车加速时间来表明汽车的加速能力。原地起步加速时间,指汽车由Ⅰ档或Ⅱ档起步,并以最大的加速强度(包括选择恰当的换档时机)逐步换至最高档后,到某一预定的距离或车速所需的时间。超车加速时间,指用最高档或次高档由某一较低车速全力加速至某一高速所需的时间。由于超车时两车辆并行,容易发生安全事故,所以超车加速能力强,并行行程短,行驶就安全。一般常用0→400m或0→100km/h所需的时间来表明汽车的原地起步加速能力。对超车加速能力还没有一致的规定,采用较多的是用最高档或次高档,由某一中等车速全力加速行驶至某一高速所需的时间。轿车对加速时间尤为重视。1.1.3汽车的最大爬坡度汽车满载时,在良好路面上的最大爬坡度,表示汽车的上坡能力。显然,汽车的最大爬坡度指Ⅰ档最大爬坡度。轿车最高车速大,加速时间短,经常在较好的道路上行驶,一般不强调它的爬坡能力;而且它的Ⅰ档加速能力大,故爬坡能力也强。货车在各种地区的各种道路上行驶,所以必须具有足够的爬坡能力。实际上,代表了汽车的极限爬坡能力,它应比实际行驶中遇到的道路最大爬坡度超出很多。这是因为应考虑到在坡道上停车后,顺利起步加速、克服松软坡道路面的大阻力等要求的缘故。一般货车在30%即16.7°左右,越野汽车要在坏路或无路条件下行驶,因而爬坡能力是一个很重要的指标,它的最大爬坡度可达60%即31°左右。三个指标的测定,均应在无风的条件下进行。确定汽车的动力性,就是确定汽车沿行驶方向的运动状态。因此,需要掌握沿汽车行驶方向作用于汽车上的各种外力,即驱动力与行驶阻力。根据这些力的平衡关系,建立汽车行驶方程式,就可以估算汽车的最高车速、加速时间和最大爬坡度。8.2节汽车的驱动力与行驶阻力确定汽车的动力性,就是确定汽车沿行驶方向的运动状况。为此需要掌握沿汽车行驶方向作用于汽车的各种外力,即驱动力与行驶阻力。根据这些力的平衡关系,建立汽车行驶方程式,就可以估算汽车的各项动力性能指标。汽车的行驶方程式为∑式中——汽车驱动力;∑——行驶阻力之和。1.2.1汽车的驱动力在汽车行驶中,发动机发出的有效转矩,经变速器、传动轴、主减速器等后,由半轴传给驱动车轮。如果变速器传动比为、主减速比为、传动系的机械效率为,则传到驱动轮上的转矩,即驱动力矩为如图1.1所示,此时作用于驱动轮上的转矩,产生对地面的圆周力,则地面对驱动轮的反作用力,即为汽车驱动力。如果驱动车轮的滚动半径为,就有,因而,汽车驱动力为图1.1汽车的驱动力(1.1)下面将对式(1.1)中发动机转矩丁、传动系机械效率及车轮半径等作进一步讨论,并作出汽车的驱动力图。1.2.1.1发动机的外特性发动机的功率、转矩及燃油消耗率与发动机曲轴转速的变化关系,即为发动机的速度特性。当发动机节气门全开,或高压油泵处于最大供油量位置时,此特性称为发动机的外特性,对应的关系曲线称为外特性曲线;如果节气门部分开启,则称为发动机部分负荷特性曲线。图1.2为某发动机的外特性曲线。为发动图1.2某发动机外特性曲线机最低稳定工作转速,随着发动机转速的增加,发动机发出的有效功率和有效转矩都在增加,发动机转矩达到最大值时,相应的发动机转速为,再增大发动机转速时,有效转矩有所下降,但功率继续增加,一直达到最大功率,此时发动机转速为,继续提高发动机转速,其功率反而下降。一般取=(1.1~1.2)。如转矩单位用N?m表示,功率单位用kW表示,转速用r/min表示,它们之间有如下关系:(1.2)发动机制造厂提供的发动机外特性曲线,一般是在试验台架上不带空气滤清器、水泵、风扇、消声器、发电机等附属设备条件下测试得到的。如果带上上述附属设备,测得的发动机外特性的最大功率约小15%;转速为时,功率约小2%~6%;转速再低时,两者相差更小。此外,由于在试验台架上所测的发动机工况相对稳定,而在实际使用中,发动机的工况通常是不稳定的,但由于两者差别不显著,所以在进行动力估算时,仍可用稳态工况时发动机的试验数据。如果找不到外特性曲线的数据,若已知发动机的和,则可用式(1.3)估算发动机的外特性-曲线:(1.3)式中、——发动机类型系数,汽油机==1,直接喷射式柴油机=0.5,=1.5,有预燃室式柴油机=0.6,=1.4。如果在已知和之外,还已知了及,则可用式(1.4)估算发动机的外特性-曲线:(1.4)式中——最大功率时对应的转矩。1.2.1.2传动系的机械效率发动机发出的功率,经传动系传到驱动车轮的过程中,要克服传动系各部件的摩擦而有一定的损失。若损失的功率为,则传到驱动轮的功率为-,传动系的机械效率为(1.5)传动系的功率损失由传动系中各部件——变速器、万向节、主减速器等的功率损失所组成。其中变速器和主减速器的功率损失所占比重最大,其余部件功率损失较小。损耗的功率含机械损失功率和液力损失功率。机械损失功率是指齿轮传动副、轴承、油封等处的摩擦损失的功率,其大小决定于啮合齿轮的对数,传递的转矩等因素。液力损失功率是指消耗于润滑油的搅动、润滑油与旋转零件之间的表面摩擦功率。其大小决定于润滑油的品质、温度、箱体内的油面高度,以及齿轮等旋转零件的转速。液力损失随传动零件转速提高、润滑油面高度及粘度增加而增大。传动系的机械效率是在专门的实验装置上测试得到的。在动力性计算时,-机械效率取为常数。采用有级机械变速传动系的轿车取0.9~0.92,单级主传动货车取0.9,4×4汽车取0.85。1.2.1.3车轮半径轮胎的尺寸及结构直接影响汽车的动力性。车轮按规定气压充好气后,处于无载时的半径,称为自由半径。在汽车重力作用下,轮胎发生径向变形。车轮中心与轮胎接地面的距离称为静力半径。静力半径小于其自由半径,它取决于载荷、轮胎的径向刚度,以及支承面的刚度。作用于车轮上除径向载荷外,还有转矩。车轮中心至轮胎与道路接触面切向反作用力之间的距离为动力半径。此时轮胎不仅产生径向变形,同时还产生切向变形。其切向变形取决于轮胎的切向刚度、轮胎承受的转矩及转动时的离心惯性力等。以车轮转动圈数与车轮实际滚动距离之间关系换算得出的车轮半径,称为车轮的运动半径(滚动半径),即(1.6)显然,对汽车作动力学分析时,应该用静力半径;而作运动学分析时应该用滚动半径。但在一般的分析中常不计它们的差别,统称为车轮半径,即认为1.2.1.4汽车的驱动力图在各个排档上,汽车驱动力与车速之间的函数关系曲线,称为汽车驱动力图。它直观地显示变速器处于各档位时,驱动力随车速变化的规律。当已知发动机外特性曲线、传动系的传动比及机械效率、车轮半径等参数时,即可作出汽车驱动力图。具体方法如下:(1)从发动机外特性曲线上取若干(、)。(2)根据选定的不同档位传动比,按式(1)算出驱动力值。(3)根据转速、变速器传动比及主减速比,由下式计算与所求对应的速度:(1.7)(4)建立-坐标,选好比例尺,对每个档位,将计算出的值(,)分别描点并连成曲线,即得驱动力图。图1.3即为某五档变速器货车的驱动力图。从驱动力图中可以看出驱动力与其行驶速度的关系及不同档位驱动力的变化。驱动力图可以作为工具用来分析汽车的动力性。1.2.2汽车的行驶阻力汽车在水平道路上等速行驶时必须克服来自地面的滚动阻力和来自空气的空气阻力;当汽车在坡道上上坡行驶时,还必须克服图1.3汽车驱动力图重力沿坡道的分力,即坡度阻力;另外汽车加速行驶时还需要克服的阻力即加速阻力。因此汽车行驶的总阻力为∑+++(1.8)上述各种阻力中,滚动阻力和空气阻力是在任何行驶条件下均存在的。坡度阻力和加速阻力仅在一定行驶条件下存在。水平道路上等速行驶时就没有坡度阻力和加速阻力。1.2.2.1滚动阻力汽车行驶时,车轮与地面在接触区域的径向、切向和侧向均产生相互作用力,轮胎与地面亦存在相应的变形。无论是轮胎还是地面,其变形过程必然伴随着一定的能量损失。这些能量损失是使车轮转动时产生滚动阻力的根本原因。1.2.2.1.1弹性车轮在径向加载后卸载过程中形成的弹性迟滞损失当汽车车轮在水平路面上,且不受侧向力作用时,车轮与地面间将产生径向和切向的相互作用力。图1.4为轮胎在硬支承路面上受径向载荷时的变形过程及对应的曲线。图1.4轮胎径向变形曲线a)轮胎受力b)变形曲线从图1.4中可见,当弹性车轮在硬支承路面上,对其进行加载和卸载的过程中,径向载荷与由其引起的轮胎径向变形量之间的对应关系。加载变形曲线与卸载变形曲线并不重合,则可知加载与卸载不是可逆过程,存在着能量损失。面积为加载过程中对轮胎所作的功;面积为卸载过程中,轮胎恢复变形时释放的功。两面积之差即为加载与卸载过程的能量损失。这一部分能量消耗在轮胎各组成部分相互间的摩擦,以及橡胶、帘线等物质分子间的摩擦,最后转化为热能而消失在大气中。这种损失称为弹性物质的迟滞损失。从图1.4b中可见,在同样变形量的情况下,处于加载过程的载荷较大,即图中>。这说明当车轮在径向载荷作用下滚动时,由于弹性迟滞现象,使地面对车轮的法向支持力为不对称分布,其法向反力合力作用线,相对于车轮中心线前移了一段距离,因而形成了阻碍车轮滚动的力偶矩。1.2.2.1.2等速滚动从动轮受力分析及滚动阻力系数图1.5从动轮在硬路面上滚动时的受力情况a)受力分析b)滚动阻力在水平路面等速直线滚动的汽车从动轮,如图1.5a所示,其法向反力的合力相对车轮垂直中心线前移了一段距离。值随弹性损失的增大而增大。车轮所承受的径向载荷,与法向反力,大小相等,方向相反,即=-。若法向反力通过车轮中心,则是从动轮在硬路面上等速直线滚动的受力情况,如图1.5b所示。图中力矩为作用于车轮上阻碍车轮滚动的滚动力偶矩,且=。要使从动轮等速直线滚动,必须通过车轮中心,通过车轴施加以推力,它与地面切向反力构成一力偶矩来克服滚动力偶矩,由车轮中心力矩平衡条件,得=故所应施加推力为或式中称为滚动阻力系数,可见滚动阻力系数是单位汽车重力所需的推力。换言之,滚动阻力等于滚动阻力系数与车轮负荷的乘积。故车轮滚动阻力为(1.9)这样,在分析汽车的行驶阻力时,可不必具体计算阻碍车轮滚动的力偶矩,而只计算滚动阻力(实际作用在车轮上的是滚动阻力偶矩)。1.2.2.1.3等速滚动的驱动轮受力分析图1.6为驱动轮在硬路面上等速直线滚动时的受力图。图中为道路对驱动轮的切向反力,为车架通过悬架给轮轴的反推力,法向反作用力也由于轮胎弹性迟滞损失,使其作用线前移一段距离,即在驱动轮上同样作用有滚动力偶矩。由对车轮中心的力矩平衡条件得:图1.6驱动轮在硬路面上滚动时的受力情况(1.10)由上式可见,真正作用在驱动轮上驱动汽车行驶的力为地面对车轮的切向反作用力,其数值等于驱动力减去驱动轮滚动阻力。1.2.2.1.4滚动阻力系数的影响因素滚动阻力系数与路面种类及其状态、车速及轮胎等有关,其数值通过实验确定。(1)路面种类及其状态对滚动阻力系数的影响表1.1列出了车速为50km/h时,汽车在各种

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功