1重庆市2011年中考数学试卷—解析版一.选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1、(2011•重庆)在﹣6,0,3,8这四个数中,最小的数是(A)A、﹣6B、0C、3D、8考点:有理数大小比较。专题:计算题。分析:根据正数大于0,0大于负数,正数大于负数,两负数绝对值大的反而小,解答即可.解答:解:∵8>3>0>﹣6,∴最小的数是﹣6.故选A.点评:本题考查了有理数大小的比较,熟记:正数大于0,0大于负数,正数大于负数,两负数绝对值大的反而小.2、(2011•重庆)计算(a3)2的结果是(C)A、aB、a5C、a6D、a9考点:幂的乘方与积的乘方。专题:计算题。分析:根据幂的乘方法则:底数不变,指数相乘.(am)n=amn(m,n是正整数)计算即可.解答:解:(a3)2=a3×2=a6.故选C.点评:本题考查了幂的乘方,注意:①幂的乘方的底数指的是幂的底数;②性质中“指数相乘”指的是幂的指数与乘方的指数相乘,这里注意与同底数幂的乘法中“指数相加”的区别.3、(2011•重庆)下列图形中,是中心对称图形的是(B)A、B、C、D、考点:中心对称图形。专题:数形结合。分析:根据中心对称图形的定义来判断:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.解答:解:A、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形;B、将此图形绕某一点旋转180度正好与原来的图形重合,所以这个图形是中心对称图形;C、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形;D、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形.故选B.点评:本题主要考查中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.4、(2011•重庆)如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于(D)A、60°B、50°C、45°D、40°2考点:平行线的性质。分析:根据三角形的内角和为180°,即可求出∠D的度数,再根据两直线平行,内错角相等即可知道∠BAD的度数.解答:解:∵∠C=80°,∠CAD=60°,∴∠D=180°﹣80°﹣60°=40°,∵AB∥CD,∴∠BAD=∠D=40°.故选D.点评:本题考查了三角形的内角和为180°,以及两直线平行,内错角相等的性质,难度适中.5、(2011•重庆)下列调查中,适宜采用抽样方式的是(A)A、调查我市中学生每天体育锻炼的时间B、调查某班学生对“五个重庆”的知晓率C、调查一架“歼20”隐形战机各零部件的质量D、调查广州亚运会100米参赛运动员兴奋剂的使用情况考点:全面调查与抽样调查。专题:应用题。分析:调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析.普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式;当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.解答:解:A、调查我市中学生每天体育锻炼的时间,适合抽样调查,B、调查某班学生对“五个重庆”的知晓率,采用全面调查,C、调查一架“歼20”隐形战机各零部件的质量,采用全面调查,D、调查广州亚运会100米参赛运动员兴奋剂的使用情况,采用全面调查,故选A.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查;对于精确度要求高的调查,事关重大的调查往往选用普查,比较简单.6、(2011•重庆)如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于()A、60°B、50°C、40°D、30°考点:圆周角定理。分析:在等腰三角形OCB中,求得两个底角∠OBC、∠0CB的度数,然后根据三角形的内角和求得∠COB=100°;最后由圆周角定理求得∠A的度数并作出选择.解答:解:在△OCB中,OB=OC(⊙O的半径),∴∠OBC=∠0CB(等边对等角);∵∠OCB=40°,∠C0B=180°﹣∠OBC﹣∠0CB,∴∠COB=100°;又∵∠A=错误!未找到引用源。∠C0B(同弧所对的圆周角是所对的圆心角的一半),∴∠A=50°,故选B.点评:本题考查了圆周角定理:同弧所对的圆周角是所对的圆心角的一半.解题时,借用了等腰三角形的两个底角相等和三角形的内角和定理.7、(2011•重庆)已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是()3A、a>0B、b<0C、c<0D、a+b+c>0考点:二次函数图象与系数的关系。专题:数形结合。分析:根据抛物线的开口方向判断a的正负;根据对称轴在y轴的右侧,得到a,b异号,可判断b的正负;根据抛物线与y轴的交点为(0,c),判断c的正负;由自变量x=1得到对应的函数值为正,判断a+b+c的正负.解答:解:∵抛物线的开口向下,∴a<0;又∵抛物线的对称轴在y轴的右侧,∴a,b异号,∴b>0;又∵抛物线与y轴的交点在x轴上方,∴c>0,又x=1,对应的函数值在x轴上方,即x=1,y=ax2+bx+c=a+b+c>0;所以A,B,C选项都错,D选项正确.故选D.点评:本题考查了抛物线y=ax2+bx+c(a≠0)中各系数的作用:a>0,开口向上,a<0,开口向下;对称轴为x=﹣,a,b同号,对称轴在y轴的左侧;a,b异号,对称轴在y轴的右侧;抛物线与y轴的交点为(0,c),c>0,与y轴正半轴相交;c<0,与y轴负半轴相交;c=0,过原点.8、(2011•重庆)为了建设社会主义新农村,我市积极推进“行政村通畅工程”.张村和王村之间的道路需要进行改造,施工队在工作了一段时间后,因暴雨被迫停工几天,不过施工队随后加快了施工进度,按时完成了两村之间的道路改造.下面能反映该工程尚未改造的道路里程y(公里)与时间x(天)的函数关系的大致图象是(D)A、B、C、D、考点:函数的图象。专题:数形结合。分析:根据y随x的增大而减小,即可判断选项A错误;根据施工队在工作了一段时间后,因暴雨被迫停工几天,即可判断选项B错误;根据施工队随后加快了施工进度得出y随x的增大减小得比开始的快,即可判断选项C、D的正误.解答:解:∵y随x的增大而减小,∴选项A错误;∵施工队在工作了一段时间后,因暴雨被迫停工几天,∴选项B错误;∵施工队随后加快了施工进度,∴y随x的增大减小得比开始的快,∴选项C错误;选项D正确;故选D.点评:本题主要考查对函数图象的理解和掌握,能根据实际问题所反映的内容来观察与理解图象是解答此题的关键.9、(2011•重庆)下列图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑥个图形中平行四边形的个数为(C)4A、55B、42C、41D、29考点:规律型:图形的变化类。专题:规律型。分析:由于图②5个=1+2+2,图③11个=1+2+3+2+3,图④19=1+2+3+4+2+3+4,由此即可得到第⑥个图形中平行四边形的个数.解答:解:∵图②平行四边形有5个=1+2+2,图③平行四边形有11个=1+2+3+2+3,图④平行四边形有19=1+2+3+4+2+3+4,∴图⑥的平行四边形的个数为1+2+3+4+5+6+2+3+4+5+6=41.故选C.点评:本题是一道根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律,然后利用规律解决一般问题.10、(2011•重庆)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(C)A、1B、2C、3D、4考点:翻折变换(折叠问题);全等三角形的判定与性质;勾股定理。专题:几何综合题。分析:根据翻折变换的性质和正方形的性质可证△ABG≌△AFG;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;由于S△FGC=S△GCE﹣S△FEC,求得面积比较即可.解答:解:①正确.因为AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴△ABG≌△AFG;②正确.因为:EF=DE=错误!未找到引用源。CD=2,设BG=FG=x,则CG=6﹣x.在直角△ECG中,根据勾股定理,得(6﹣x)2+42=(x+2)2,解得x=3.所以BG=3=6﹣3=GC;③正确.因为CG=BG=GF,所以△FGC是等腰三角形,∠GFC=∠GCF.又∠AGB=∠AGF,∠AGB+∠AGF=180°﹣∠FGC=∠GFC+∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④错误.过F作FH⊥DC,∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴错误!未找到引用源。=错误!未找到引用源。,EF=DE=2,GF=3,∴EG=5,∴错误!未找到引用源。=错误!未找到引用源。=错误!未找到引用源。,∴S△FGC=S△GCE﹣S△FEC=错误!未找到引用源。×3×4﹣错误!未找到引用源。×4×(错误!未找到引用源。×3)=错误!未找到引用源。≠3.故选C.5点评:本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.二.填空题:(本大题6个小题,每小题4分,共24分)11、(2011•重庆)据第六次全国人口普查结果显示,重庆常住人口约为2880万人.将数2880万用科学记数法表示为2.88×103万.考点:科学记数法—表示较大的数。专题:数字问题。分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将2880万用科学记数法表示为2.88×103.故答案是:2.88×103.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12、(2011•重庆)如图,△ABC中,DE∥BC,DE分别交边AB、AB于D、E两点,若AD:AB=1:3,则△ADE与△ABC的面积比为1:9.考点:相似三角形的判定与性质。分析:根据相似三角形的面积比等于相似比的平方直接得出答案.解答:解:∵△ABC中,DE∥BC,∴△ADE∽△ABC,相似比为AD:AB=1:3,∴△ADE与△ABC的面积比为:1:9.故答案为:1:9.点评:此题主要考查了相似三角形的性质,根据相似比性质得出面积比是解决问题的关键.13、(2011•重庆)在参加“森林重庆”的植树活动中,某班六个绿化小组植树的棵数分别是:10,9,9,10,11,9.则这组数据的众数是9.考点:众数。专题:计算题。分析:众数是一组数据中出现次数最多的数据,有时众数可以不止一个.解答:解:在这一组数据中9是出现次数最多的,故众数是9;故答案为9.点评:本题为统计题,考查众数定义.如果众数的概念掌握得不好,就会出错.14、(2011•重庆)在半径为错误!未找到引用源。的圆中,45°的圆心角所对的弧长等于1.考点:弧长的计算。6专题:计算题。分析:根据弧长公式l=错误!未找到引用源。把半径和