2012-2013学年广东省珠海市红旗中学高三(上)12月月考数学试卷一、选择题(本大题共10题,每小题5分,共50分.在每题列出的四个选项中,只有一项是最符合题目要求的)1.(5分)(2010•福建模拟)设非空集合A,B满足A⊆B,则()A.∃x0∈A,使得x0∉BB.∀x∈A,有x∈BC.∃x0∈B,使得x0∉AD.∀x∈B,有x∈A考点:集合的包含关系判断及应用;元素与集合关系的判断.专题:阅读型.分析:本题宜用集合的子集的定义来说明,若∀x∈A,有x∈B则可以说明A⊆B,由此定义研究四个选项即可得出正确选项解答:解:由题意及子集的定义知A⊆B,即∀x∈A,有x∈B故选B点评:本题考查集合的包含关系判断及应用,解题的关键是掌握并理解子集的定义.2.(5分)已知x,y∈R,i为虚数单位,且(x﹣2)i﹣y=1,则(1+i)x﹣y的值为()A.4B.﹣4C.﹣2iD.﹣2+2i考点:复数相等的充要条件;复数代数形式的乘除运算.专题:计算题.分析:根据复数相等的充要条件可得x,y,代入目标式可得答案.解答:解:(x﹣2)i﹣y=1,即(x﹣2)i=y+1,所以,解得x=2,y=﹣1,所以(1+i)x﹣y=(1+i)2+1=(1+i)3=﹣2+2i,故选D.点评:本题考查复数相等的充要条件、复数代数形式的乘除运算,属基础题.3.(5分)(2011•广东三模)已知数列{an}是等差数列,且a1+a3+a5=2π,则cosa3=()A.B.C.D.考点:等差数列的性质.专题:计算题.分析:首先根据等差数列的性质得出a1+a5=2a3就可以求出a3的值,然后根据特殊角的三角函数值求出答案.解答:解:∵a1+a3+a5=2πa1+a5=2a3∴3a3=2π∴a3=∴cosa3=cos=﹣故选D.点评:本题考查了等差数列的性质,熟练掌握性质可以提高做题效率,属于基础题.4.(5分)已知变量x,y满足约束条件,则z=2x•4y的最大值为()A.64B.32C.2D.考点:基本不等式;简单线性规划.专题:计算题.分析:先画出可行域,再把可行域的几个角点分别代入,看哪个角点对应的函数值最大即可.解答:解:由于目标函数z=2x•4y=2x+2y,令m=x+2y,当m最大时,目标函数z就最大.画出可行域如图:可得点C(3,1)为最优解,m最大为5,故目标函数z=2x•4y=2x+2y的最大值为25=32,故选B.点评:本题主要考查简单的线性规划问题,一般在求目标函数的最值时,常用角点法,就是求出可行域的几个角点,分别代入目标函数,即可求出目标函数的最值.5.(5分)(2010•广州一模)在△ABC中,点P在BC上,且,点Q是AC的中点,若,,则=()A.(﹣2,7)B.(﹣6,21)C.(2,﹣7)D.(6,﹣21)考点:数量积的坐标表达式.专题:计算题.分析:利用向量的坐标形式的运算法则求出,利用向量共线的充要条件求出,利用向量共线的充要条件求出解答:解:=(﹣3,2)∵点Q是AC的中点∴∵=(_6,21)故选B点评:本题考查向量的运算法则、向量共线的充要条件:⇔6.(5分)(2011•江西模拟)已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,则该几何体的体积是()A.8B.C.D.考点:由三视图求面积、体积.专题:计算题.分析:由已知三视图我们可以判断出该几何体为一个正方体截去一个三棱台,根据已知中正方体的棱长为2,我们根据三视图中所标识的数据,分别计算出正方体的体积和三棱台的体积,进而可以求出该几何体的体积.解答:解:分析已知中的三视图得:几何体是正方体截去一个三棱台,∴.故选C点评:本题考查的知识点是由三视图求体积,其中根据三视图判断几何体的形状是解答醒的关键点,同时也是解答本题的难点.7.(5分)(2011•珠海二模)函数y=cos2(x﹣)是()A.最小正周期是π的偶函数B.最小正周期是π的奇函数C.最小正周期是2π的偶函数D.最小正周期是2π的奇函数考点:三角函数的周期性及其求法;余弦函数的奇偶性.专题:计算题.分析:根据题意对原函数进行化简得f(x)=y=sin2x=.根据公式求出函数的周期,根据偶函数的定义判断出函数是偶函数.解答:解:由题意得y=cos2(x﹣)所以f(x)=y=sin2x=.所以T=π因为函数的定义域为R,其关于原点对称,且f(﹣x)=f(x),所以函数是偶函数,所以函数的最小正周期是π的偶函数.故选A.点评:解决此类问题的关键是熟悉二倍角公式,以及三角函数的周期的求解与奇偶性的证明,在高考中此类问题一般出现在选择题与填空题中.8.(5分)(2011•惠州模拟)从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图由图中数据可知身高在[120,130]内的学生人数为()A.20B.25C.30D.35考点:用样本的频率分布估计总体分布;频率分布直方图.专题:计算题.分析:由题意,可由直方图中各个小矩形的面积和为1求出a值,再求出此小矩形的面积即此组人数在样本中的频率,再乘以样本容量即可得到此组的人数解答:解:由图知,(0.035+a+0.020+0.010+0.005)×10=1,解得a=0.03∴身高在[120,130]内的学生人数在样本的频率为0.03×10=0.3故身高在[120,130]内的学生人数为0.3×100=30故选C点评:本题考查频率分布直方图,解题的关键是理解直方图中各个小矩形的面积的意义及各个小矩形的面积和为1,本题考查了识图的能力9.(5分)(2009•湖南)设函数=f(x)在(﹣∞,+∞)内有定义,对于给定的正数K,定义函数fK(x)=取函数f(x)=2﹣|x|.当K=时,函数fK(x)的单调递增区间为()A.(﹣∞,0)B.(0,+∞)C.(﹣∞,﹣1)D.(1,+∞)考点:函数单调性的判断与证明.专题:计算题;压轴题.分析:先根据题中所给的函数定义求出函数函数fK(x)的解析式,是一个分段函数,再利用指数函数的性质即可选出答案.解答:解:由f(x)≤得:,即,解得:x≤﹣1或x≥1.∴函数fK(x)=由此可见,函数fK(x)在(﹣∞,﹣1)单调递增,故选C.点评:本题主要考查了分段函数的性质、函数单调性的判断,属于基础题.10.(5分)(2007•江西)设椭圆=1(a>0,b>0)的离心率e=,右焦点F(c,0),方程ax2+bx﹣c=0的两个根分别为x1,x2,则点P(x1,x2)在()A.圆x2+y2=2内B.圆x2+y2=2上C.圆x2+y2=2外D.以上三种情况都有可能考点:椭圆的应用.专题:计算题;压轴题.分析:先根据x1+x2=﹣,x1x2=﹣表示出x12+x22,再由e==得到a与c的关系,从而可表示出b与c的关系,然后代入到x12+x22的关系式中可得到x12+x22的范围,从而可确定答案.解答:解:∵x1+x2=﹣,x1x2=﹣x12+x22=(x1+x2)2﹣2x1x2=e==∴a=2cb2=a2﹣c2=3c2所以x12+x22=<2所以在圆内故选A.点评:本题主要考查椭圆的基本性质的应用.考查对椭圆基础知识的综合应用.二、填空题:本大题共3小题,每小题5分,满分15分.必做题:(11-13题)11.(5分)(2012•湖南)如果执行如图所示的程序框图,输入x=﹣1,n=3,则输出的数S=﹣4.考点:循环结构.专题:计算题.分析:列出循环过程中S与K的数值,不满足判断框的条件即可结束循环.解答:解:判断前x=﹣1,n=3,i=2,第1次判断后循环,S=﹣6+2+1=﹣3,i=1,第2次判断后S=5,i=0,第3次判断后S=﹣4,i=﹣1,第4次判断后﹣1≥0,不满足判断框的条件,结束循环,输出结果:﹣4.故答案为:﹣4.点评:本题考查循环框图的应用,注意判断框的条件的应用,考查计算能力.12.(5分)(2012•黄州区模拟)有一个底面圆的半径为1,高为3的圆柱,点O1,O2分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P,则点P到点O1,O2的距离都大于1的概率为.考点:几何概型;旋转体(圆柱、圆锥、圆台).专题:计算题.分析:本题利用几何概型求解.先根据到点的距离等于1的点构成图象特征,求出其体积,最后利用体积比即可得点P到点O1,O2的距离都大于1的概率.解答:解:∵到点O1的距离等于1的点构成一个半个球面,到点O2的距离等于1的点构成一个半个球面,两个半球构成一个整球,如图,点P到点O1,O2的距离都大于1的概率为:P====,故答案为:.点评:本小题主要考查几何概型、圆柱和球的体积等基础知识,考查运算求解能力,考查空间想象力、化归与转化思想.属于基础题.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.13.(5分)(2013•东莞一模)在同一平面直角坐标系中,已知函数y=f(x)的图象与y=ex的图象关于直线y=x对称,则函数y=f(x)对应的曲线在点(e,f(e))处的切线方程为x﹣ey=0.考点:利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:根据两函数的图象关于y=x对称可知,两函数互为反函数,所以求出已知函数的反函数即可得到f(x)的解析式;再求出f(x)的导函数,把x等于e代入导函数求出值即为切线方程的斜率,然后把x等于e代入f(x)中求出切点的纵坐标,根据切点坐标和斜率写出切线方程即可.解答:解:根据题意,函数y=f(x)的图象与y=ex的图象关于直线y=x对称,由y=ex,解得x=lny,所以f(x)=lnx;f′(x)=,所以切线的斜率k=f′(e)=,把x=e代入f(x)中得:f(e)=lne=1,所以切点坐标为(e,1)则所求的切线方程为:y﹣1=(x﹣e),化简得:x﹣ey=0.故答案为:x﹣ey=0.点评:此题考查学生会利用导数求曲线上过某点切线方程的斜率,掌握两函数互为反函数的条件,会根据一点和斜率写出直线的方程,是一道综合题.三.选做题:(14-15题,考生只能从中选一题)14.(5分)(2012•天津)如图,已知AB和AC是圆的两条弦,过点B作圆的切线与AC的延长线相交于点D,过点C作BD的平行线与圆相交于点E,与AB相交于点F,AF=3,FB=1,EF=,则线段CD的长为.考点:与圆有关的比例线段.专题:计算题;压轴题.分析:由相交弦定理求出FC,由相似比求出BD,设DC=x,则AD=4x,再由切割线定理,BD2=CD•AD求解.解答:解:由相交弦定理得到AF•FB=EF•FC,即3×1=×FC,FC=2,在△ABD中AF:AB=FC:BD,即3:4=2:BD,BD=,设DC=x,则AD=4x,再由切割线定理,BD2=CD•AD,即x•4x=()2,x=故答案为:点评:本题主要考查了平面几何中直线与圆的位置关系,相交弦定理,切割线定理,相似三角形的概念、判定与性质.15.(2012•北京)直线(t为参数)与曲线(α为参数)的交点个数为2.考点:圆的参数方程;直线与圆的位置关系;直线的参数方程.专题:计算题.分析:将参数方程化为普通方程,利用圆心到直线的距离与半径比较,即可得到结论.解答:解:直线(t为参数)化为普通方程为x+y﹣1=0曲线(α为参数)化为普通方程为x2+y2=9∵圆心(0,0)到直线x+y﹣1=0的距离为d=∴直线与圆有两个交点故答案为:2点评:本题考查参数方程与普通方程的互化,考查直线与圆的位置关系,属于基础题.三、解答题:本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤.16.(12分)(2012•陕西)函数(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为,(1)求函数f(x)的解析式;(2)设,则,求α的值.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数的恒等变换及化简求值.专题:计算题.分析:(1)通过函数的最大值求出A,通过对称轴求出周期,求出ω,得到函数的解析式.(2)通过,求出,通过α的范