常用的求导和定积分公式(完美)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1一.基本初等函数求导公式(1)0)(C(2)1)(xx(3)xxcos)(sin(4)xxsin)(cos(5)xx2sec)(tan(6)xx2csc)(cot(7)xxxtansec)(sec(8)xxxcotcsc)(csc(9)aaaxxln)((10)(e)exx(11)axxaln1)(log(12)xx1)(ln,2(13)211)(arcsinxx(14)211)(arccosxx(15)21(arctan)1xx(16)21(arccot)1xx函数的和、差、积、商的求导法则设)(xuu,)(xvv都可导,则(1)vuvu)((2)uCCu)((C是常数)3(3)vuvuuv)((4)2vvuvuvu反函数求导法则若函数)(yx在某区间yI内可导、单调且0)(y,则它的反函数)(xfy在对应区间xI内也可导,且)(1)(yxf或dydxdxdy1复合函数求导法则4设)(ufy,而)(xu且)(uf及)(x都可导,则复合函数)]([xfy的导数为dydydudxdudx或()()yfux二、基本积分表5(1)kdxkxC(k是常数)(2)1,1xxdxC(1)u(3)1ln||dxxCx(4)2tan1dxarlxCx(5)2arcsin1dxxCx(6)cossinxdxxC6(7)sincosxdxxC(8)21tancosdxxCx(9)21cotsindxxCx(10)sectansecxxdxxC(11)csccotcscxxdxxC(12)xxedxeC(13)lnxxaadxCa,(0,1)aa且7(14)shxdxchxC(15)chxdxshxC(16)2211tanxdxarcCaxaa(17)2211ln||2xadxCxaaxa(18)221sinxdxarcCaax(19)22221ln()dxxaxCax8(20)2222ln||dxxxaCxa(21)tanln|cos|xdxxC(22)cotln|sin|xdxxC(23)secln|sectan|xdxxxC(24)cscln|csccot|xdxxxC注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。92、以上公式把x换成u仍成立,u是以x为自变量的函数。3、复习三角函数公式:2222sincos1,tan1sec,sin22sincos,xxxxxxx21cos2cos2xx,21cos2sin2xx。注:由[()]'()[()]()fxxdxfxdx,此步为凑微分过程,所以第一类换元法也叫凑微分法。此方法是非常重要的一种积分法,要运用自如,务必熟记基本积分表,并掌握常见的凑微分形式及“凑”的技巧。10小结:1常用凑微分公式11xuxuxuxuxuxuaueuxuxubaxuxdxfdxxxfxdxfdxxxfxdxfxdxxfxdxfxdxxfxdxfxdxxfxdxfxdxxfdaafadxaafdeefdxeefxdxfdxxxfxdxfdxxxfabaxdbaxfadxbaxfxxxxxxxxxxarcsinarctancottancossinln)(arcsin)(arcsin11)(arcsin.11)(arctan)(arctan11)(arctan.10cot)(cotcsc)(cot.9tan)(tansec)(tan.8cos)(cossin)(cos.7sin)(sincos)(sin.6)(ln1)(.5)()(..4)(ln)(ln1)(ln.3)0()()(1)(.2)0()()(1)(.122221法分积元换一第换元公式积分类型

1 / 11
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功