一、选择题1.数列1,(1+2),(1+2+22),…,(1+2+22+…+2n-1),…的前n项之和为()A.2n-1B.n·2n-nC.2n+1-nD.2n+1-n-2答案D解析记an=1+2+22+…+2n-1=2n-1∴Sn=2·2n-12-1-n=2n+1-2-n2.数列{an}、{bn}满足anbn=1,an=n2+3n+2,则{bn}的前10项之和为()A.13B.512C.12D.712答案B解析bn=1an=1n+1n+2=1n+1-1n+2S10=b1+b2+b3+…+b10=12-13+13-14+14-15+…+111-112=12-112=5123.已知等差数列公差为d,且an≠0,d≠0,则1a1a2+1a2a3+…+1anan+1可化简为()A.nda1a1+ndB.na1a1+ndC.da1a1+ndD.n+1a1[a1+n+1d]答案B解析∵1anan+1=1d(1an-1an+1)∴原式=1d(1a1-1a2+1a2-1a3+…+1an-1an+1)=1d(1a1-1an+1)=na1·an+1,选B4.设直线nx+(n+1)y=2(n∈N*)与两坐标轴围成的三角形面积为Sn,则S1+S2+…+S2008的值为()A.20052006B.20062007C.20072008D.20082009答案D解析直线与x轴交于(2n,0),与y轴交于(0,2n+1),∴Sn=12·2n·2n+1=1nn+1=1n-1n+1,∴原式=(1-12)+(12-13)+…+(12008-12009)=1-12009=20082009二、填空题5.(1002-992)+(982-972)+…+(22-12)=____________.答案5050解析原式=100+99+98+97+…+2+1=100×100+12=50506.Sn=122-1+142-1+…+12n2-1=________.答案n2n+1解析通项an=12n2-1=12n-12n+1=12(12n-1-12n+1)∴Sn=12(1-13+13-15+…+12n-1-12n+1)=12(1-12n+1)=n2n+17.(2010·《高考调研》原创题)某医院近30天每天因患甲型H1N1流感而入院就诊的人数依次构成数列{an},已知a1=1,a2=2,且满足an+2-an=1+(-1)n(n∈N*),则该医院30天内因患甲型H1N1流感而入院就诊的人数共有________.答案255解析当n为偶数时,由题易得an+2-an=2,此时为等差数列;当n为奇数时,an+2-an=0,此时为常数列,所以该医院30天内因患甲型H1N1流感而入院就诊的人数总和为S30=15+15×2+15×142×2=255.三、解答题8.(2010·重庆卷,文)已知{an}是首项为19,公差为-2的等差数列,Sn为{an}的前n项和.(1)求通项an及Sn;(2)设{bn-an}是首项为1,公比为3的等比数列,求数列{bn}的通项公式及其前n项和Tn.解析(1)因为{an}是首项为a1=19,公差为d=-2的等差数列,所以an=19-2(n-1)=-2n+21.Sn=19n+nn-12·(-2)=-n2+20n.(2)由题意知bn-an=3n-1,所以bn=3n-1+an=3n-1-2n+21.Tn=Sn+(1+3+…+3n-1)=-n2+20n+3n-12.9.已知数列{an}中,a1=1,a2=2,an+2=anq2,(q≠0)求和:1a1+1a2+…+1a2n.解由题意得1a2n-1=1a1q2-2n,1a2n=1a2q2-2n,于是1a1+1a2+…+1a2n=(1a1+1a3+…+1a2n-1)+(1a2+1a4+…+1a2n)=1a1(1+1q2+1q4+…+1q2n-2)+1a2(1+1q2+1q4+…+1q2n-2)=32(1+1q2+1q4+…+1q2n-2).当q=1时,1a1+1a2+…+1a2n=32(1+1q2+1q4+…+1q2n-2)=32n,当q≠1时,1a1+1a2+…+1a2n=32(1+1q2+1q4+…+1q2n-2)=32(1-q-2n1-q-2)=32[q2n-1q2n-2q2-1].故1a1+1a2+…+1a2n=32n,q=132[q2n-1q2n-2q2-1],q≠1.10.数列{an}的前n项和为Sn=10n-n2,求数列{|an|}的前n项和.解析易求得an=-2n+11(n∈N*).令an≥0,得n≤5;令an<0,得n≥6.记Tn=|a1|+|a2|+…+|an|,则:(1)当n≤5时,Tn=|a1|+|a2|+…+|an|=a1+a2+…+an=Sn=10n-n2.(2)当n≥6时,Tn=|a1|+|a2|+…+|an|=a1+a2+a3+a4+a5-a6-a7-…-an=2(a1+a2+a3+a4+a5)-(a1+a2+a3+a4+a5+a6+…+an)=2S5-Sn=n2-10n+50.综上,得Tn=-n2+10nn≤5时;n2-10n+50n≥6时.11.已知数列{an}为等比数列.Tn=na1+(n-1)a2+…+an,且T1=1,T2=4(1)求{an}的通项公式.(2)求{Tn}的通项公式.解析(1)T1=a1=1T2=2a1+a2=2+a2=4,∴a2=2∴等比数列{an}的公比q=a2a1=2∴an=2n-1(2)解法一:Tn=n+(n-1)·2+(n-2)·22+…+1·2n-1①2Tn=n·2+(n-1)22+(n-2)23+…+1·2n②②-①得Tn=-n+2+22+…+2n-1+2n=-n+21-2n1-2=-n+2n+1-2=2n+1-n-2解法二:设Sn=a1+a2+…+an∴Sn=1+2+…+2n-1=2n-1∴Tn=na1+(n-1)a2+…+2an-1+an=a1+(a1+a2)+…+(a1+a2+…+an)=S1+S2+…+Sn=(2-1)+(22-1)+…+(2n-1)=(2+22+…+2n)-n=21-2n1-2-n=2n+1-n-212.设数列{an}是公差大于0的等差数列,a3,a5分别是方程x2-14x+45=0的两个实根.(1)求数列{an}的通项公式;(2)设bn=an+12n+1,求数列{bn}的前n项和Tn.解(1)因为方程x2-14x+45=0的两个根分别为5、9,所以由题意可知a3=5,a5=9,所以d=2,所以an=a3+(n-3)d=2n-1.(2)由(1)可知,bn=an+12n+1=n·12n,∴Tn=1×12+2×122+3×123+…+(n-1)×12n-1+n·12n①,∴12Tn=1×122+2×123+…+(n-1)×12n+n·12n+1②,①-②得,12Tn=12+122+123+…+12n-1+12n-n·12n+1=1-n+22n+1,所以Tn=2-n+22n.13.已知数列{an}的首项a1=23,an+1=2anan+1,n=1,2,….(1)证明:数列{1an-1}是等比数列;(2)求数列{nan}的前n项和Sn.解(1)∵an+1=2anan+1,∴1an+1=an+12an=12+12·1an,∴1an+1-1=12(1an-1),又a1=23,∴1a1-1=12.∴数列{1an-1}是以12为首项,12为公比的等比数列.(2)由(1)知1an-1=12·12n-1=12n,即1an=12n+1,∴nan=n2n+n.设Tn=12+222+323+…+n2n.①则12Tn=122+223+…+n-12n+n2n+1.②①-②得12Tn=12+122+…+12n-n2n+1=121-12n1-12-n2n+1=1-12n-n2n+1,∴Tn=2-12n-1-n2n,又1+2+3+…+n=nn+12,∴数列{nan}的前n项和Sn=2-2+n2n+nn+12=n2+n+42-n+22n.1.已知数列{1n+n+1}的前n项和Sn=9,求n的值.解析记an=1n+n+1=n+1-n,则:a1=2-1,a2=3-2,a3=4-3,…,an=n+1-n.∴Sn=a1+a2+…+an=(2-1)+(3-2)+(4-3)+…+(n+1-n)=n+1-1.令n+1-1=9,解得n=99.2.设数列{an}满足a1+3a2+32a3+…+3n-1an=n3,n∈N*.(1)求数列{an}的通项;(2)设bn=nan,求数列{bn}的前n项和Sn.解析(1)∵a1+3a2+32a3+…+3n-1an=n3,①∴当n≥2时,a1+3a2+32a3+…+3n-2an-1=n-13,②①-②得3n-1an=13,an=13n.在①中,令n=1,得a1=13.∴an=13n.(2)∵bn=nan,∴bn=n·3n,∴Sn=3+2×32+3×33+…+n·3n,③∴3Sn=32+2×33+3×34+…+n·3n+1.④④-③得2Sn=n·3n+1-(3+32+33+…+3n).即2Sn=n·3n+1-31-3n1-3.∴Sn=2n-13n+14+34.3.(09·广东A文)已知点(1,13)是函数f(x)=ax(a0,且a≠1)的图像上的一点.等比数列{an}的前n项和为f(n)-c.数列{bn}(bn0)的首项为c,且前n项和Sn满足Sn-Sn-1=Sn+Sn-1(n≥2).(1)求数列{an}和{bn}的通项公式;(2)若数列{1bnbn+1}的前n项和为Tn,问满足Tn10002009的最小正整数n是多少?解析(1)∵点(1,13)是函数f(x)=ax(a0,且a≠1)的图象上的一点.∴f(1)=a=13.∴f(x)=(13)x已知等比数列{an}的前n项和为f(n)-c,则当n≥2时,an=[f(n)-c]-[f(n-1)-c]=an(1-a-1)=-23n.∵{an}是等比数列,∴{an}的公比q=13,∴a2=-29=a1q=(f(1)-c)×13,解得c=1,a1=-23.故an=-23n(n≥1)由题设知{bn}(bn0)的首项b1=c=1,其前n项和Sn满足Sn-Sn-1=Sn+Sn-1(n≥2),由Sn-Sn-1=Sn+Sn-1⇒Sn-Sn-1=1,且S1=b1=1.∴{Sn}是首项为1,公差为1的等差数列,即Sn=n⇒Sn=n2.∵bn=Sn-Sn-1=2n-1(n≥2),又b1=1,故数列{bn}的通项公式为:bn=2n-1(n≥1).(2)∵bn=2n-1(n≥1)∴1bnbn+1=12(12n-1-12n+1).∴Tn=k=1n1bkbk+1=12[(11-13)+(13-15)+…+(12n-1-12n+1)]=n2n+1.要Tn10002009⇔n2n+110002009⇔n10009=11119.故满足条件的最小正整数n是112.4.(2010·湖南卷,文)给出下面的数表序列:表1表2表3…11313544812其中表n(n=1,2,3,…)有n行,第1行的n个数是1,3,5,…,2n-1,从第2行起,每行中的每个数都等于它肩上的两数之和.每个数表中最后一行都只有一个数,它们构成数列1,4,12,…,记此数列为{bn},求和:b3b1b2+b4b2b3+…+bn+2bnbn+1(n∈N*).解析表n的第1行是1,3,5,…,2n-1,其平均数是1+3+5+…+2n-1n=n.以此类推,可知,它的各行中的数的平均数按从上到下的顺序构成首项为n,公比为2的等比数列(从而它的第k行中的数的平均数是n·2k-1),于是,表n中最后一行的唯一的数为bn=n·2n-1.因此bk+2bkbk+1=k+22k+1k·2k-1·k+1·2k=k+2kk+1·2k-2=2k+1-kkk+1·2k-2=1k·2k-3-1k+1·2k-2.(k=1,2,3,…,n