1测量学主讲:胡华科e-mail:hhkzcy@jyu.edu.cnTel:13539173465QQ:1076793722第一章测量学基本知识§1概述一、测绘科学的研究对象测绘学(SurveyingandMapping,SM):研究地球空间信息的采集、处理、分析、描述、管理和利用的科学与技术。包括研究测定、描述地球形状和大小、地表形态及其变化、确定地表(海、陆、空)上各种物体几何形状、空间位置、属性及其发展动态变化,制成各种地图和建立有关信息系统等。普通测量学一般认为包括测定和测设两个方面的内容。测定(地形测图):从地面地形图测设(施工放样):从设计图地面也有将变形监测单独列出之划分。3二、测绘科学的划分及其任务1、大地测量学研究较大区域乃至整个地球,基本任务是建立国家大地控制网,测定地球形状、大小和研究地球重力场的理论、技术和方法。是测绘学基础理论学科。2、普通测量学研究较小区域(一般小于100km2)内一般测量问题,基本任务是利用常规手段测制各种大中比例尺地形图,为基本建设服务。也可认为其包含在工程测量学科中。3、摄影测量与遥感学研究利用电磁波传感器获取目标物的几何和物理信息,用于测定目标物的形状、大小、空间位置,判析其性质及相互关系,并用图形、图像和数字形式表达的理论技术的学科。4高空实测成图(航空摄影测量)74、工程测量学研究工程建设和资源开发的规划、勘测设计、施工、竣工验收和运行维护各阶段进行测量的理论和技术的学科。包括控制测量、地形测绘、施工放样、变形监测及建立相应信息管理系统等内容。5、地图(制图)学研究绘制或表述地球表面及其附属物形状的成图理论与方法的学科。地图的表现形式包括图形、图像和数字,是测绘学的主要产品形式。6、海洋测绘学以地球表面水体及水体以下地貌为测绘目标,研究其测绘理论和方法的学科。8三、测绘科学的作用及发展1、测绘工作是基本建设的排头兵(1)为建设规划和工程设计提供空间信息基础资料(2)为工程施工提供基本保证(3)为检验工程质量和监视工程设施运行安全提供重要技术手段2、测绘和社会可持续发展(1)获取可持续发展的核心基础地理数据。(2)进行可持续发展状态的动态监测。(3)建设空间型决策支持系统。3、测绘学发展概况(1)从理论方法上看(2)从仪器设备上看(3)从成果上看910121314四、学习任务与要求1、测绘与GIS的关系GIS为测绘学科的二级分支学科,测绘学其他分支学科如大地测量学、摄影测量与遥感、地图制图等不但为GIS提供高精度的基础地理空间框架和基础数据,而且它们中的误差理论、地图投影与变换理论、图形学理论、许多相关的算法等可直接用于GIS空间数据的变换合处理,在国内外诸多大学GIS专业均将有关测绘学科列入核心课程之中,测绘学为GIS三大支持学科之一。152、学习目的和要求本课程以地理空间信息获取与处理为主线,主要内容包括地理信息空间基础,现代测绘仪器的基本使用与测量方法,大比例尺地形图测绘,地形图应用分析以及全球卫星定位系统(GPS)等。该课程能引导学生掌握GIS专业所需的测绘理论基础知识和基本技能,同时也为后续专业课程的学习奠定必要的基础。要求:掌握测量学的基本原理、理论和测量方法和内容;通过实践教学掌握测量仪器水准仪、电子全站仪等的使用、测量方法,掌握GPS测量实施与数据处理方法,能组织完成小区域大比例尺地面测图,具有较熟练的地形图应用分析等实践能力。本课程教学时数48节,其中理论教学课时30节,实践教学时数18节,具体安排见教学日历。16§2地球形状和大小一、自然表面地球的自然表面包括海洋底部、高山高原在内的固体地球表面。固体地球表面的形态,是多种成分的内、外地貌营力在漫长的地质时代里综合作用的结果,非常复杂,难以用数学表达式精确描述出来,所以不适合于数学建模,也无法进行运算。例如:地球的自然表面并非光滑,珠穆朗玛与马里亚纳海沟之间的高差达近20km。17地球的自然表面(微观)地球的自然表面(宏观)18假设一个当海水处于完全静止的平衡状态时,从海平面延伸到所有大陆下部,而与地球重力方向处处正交的一个连续、闭合的水准面,这就是大地水准面。这是对地球形体的一级逼近。二、物理表面重力的作用线又称为铅垂线;处于静止状态的水面称水准面,水准面为重力等位面,并和铅垂线处处垂直。水准面有无数个。19大地水准面和铅垂线是实际测绘工作(外业)的基准面和基准线。20根据地球重力场描述的地球模型雷达卫星高程测量事实证明:大地水准面仍然不是一个规则的曲面。因为,当海平面静止时,自由水面与该面上各点的重力线方向相正交,由于地球内部质量的不均匀,大地水准面的形状(几何性质)和重力场(物理性质)都是不规则的,因而重力线方向并非恒指向地心,导致处处与重力线方向相正交的大地水准面也不是一个规则的曲面,加上海水温度的变化,盛行风的存在,可以导致海平面高达百米以上的起伏变化。因此,它也不能用一个简单的几何形状和数学公式来表达,无法进行严密的测绘数据处理和图形处理,必须换算至严格的规则曲面上。21三、数学表面大地水准面形状虽然十分复杂,但通过天文大地测量、地球重力测量、卫星大地测量等精密测量,发现:地球并不是一个正球体,而是一个极半径略短、赤道半径略长,北极略突出、南极略扁平,近于梨形的椭球体。是一个很接近于绕自转轴(短轴)旋转的椭球体。所以在测量和制图中就用旋转椭球来代替大地体(大地水准面包围的形体称大地体),这个旋转球体通常称地球椭球体,简称椭球体。这是对地球形体的二级逼近。地球椭球体表面是个可以用数学模型定义和表达的曲面,这就是我们所称的地球数学表面。测量与制图工作以地球椭球体表面作为几何参考面,将大地体上进行的大地测量结果归算到这一参考面上。22地球椭球元素:如图,地球椭球体表面是一个规则的数学表面。椭球体的大小,通常用两个半径:长半径a和短半径b,或由一个半径和扁率f来决定。人们称a、b、为地球椭球体三要素(实际只有其中任意两个是独立的,一般用长半径a和扁率f两个参数表示)。扁率的计算公式为:f=(a-b)/a,表示椭球的扁平程度。23国际上主要采用的一些椭球参数椭球名称年代长半径/m扁率附注德兰勃(Delambre)180063756531:334.0法国埃弗瑞斯(Everest)183063772761:300.801法国贝塞尔(Bessel)184163773971:299.152英国克拉克(Clarke)184163782061:294.0978英国克拉克(Clarke)188063782491:293.0459英国海福特(Hayford)191063783881:297.01942年国际第一个推荐值克拉索夫斯基194063782451:298.3苏联1967年大地坐标系196763781601:298.2471971年国际第二个推荐值1975年大地坐标系197563781401:298.2571975年国际第三个推荐值1980年大地坐标系197963781371:298.2571979年国际第四个推荐值推算地球椭球参数历来是研究地球科学的一项重要任务。24地球椭球参数由各国大地测量观测成果推算确定。我国在1953年以前,使用海福特椭球体参数,1953后改用克拉索夫斯基椭球体参数(1954北京坐标系)。1978年开始,我国决定在西安对地球重新定位,目前使用IUGG推荐的1980西安大地坐标系。GIS软件大都提供多种椭球体模型供选择,如ARC/INFO软件中提供了多达30种旋转椭球体模型。25§2参考椭球定位与常用测量坐标系地面点空间位置的描述需要选择一定的参照系和坐标系。坐标系的建立是一切空间定位与地图绘制的基础。为了定量描述质点的位置和位置随时间的变化,就必须选定一个参照系,并在参照系上建立一个坐标系。一、参考椭球定位建立大地坐标系的基本步骤:(1)确定地球椭球参数;(2)确定椭球体与大地水准面的相对位置(椭球定位)。综合运用大地测量数据,可以求得适合全球范围的地球椭球参数。椭球定位可分为:局部定位和地心定位。前者要求在一定范围内椭球面与大地水准面有最佳的符合,至于椭球的中心位置则无特殊要求;后者要求在全球范围内椭球面与大地水准面有最佳的符合,还要求椭球中心与地球质心一致。26地球椭球体定位:在天文大地测量中首先选取一个对一个国家比较适中的大地测量原点,并从此点出发通过事先布设的三角网点进行几何测量和大地经纬度测量,逐一求出各网点的N和垂线偏差,再以上述的测量结果将事先设置的地球椭球面位置调整到最理想的位置上。这种定位,相对于全球而言,只能是局部定位。局部定位的地球椭球体,称为参考椭球体,国际上有多种大地测量原点和参考椭球。参考椭球:用于代表某一地区(国家)大地水准面的地球椭球。若代表的是整个地球,则称总地球椭球。271、地理坐标系地理坐标:用经纬度表示地面点位的球面坐标。地理坐标分为天文地理坐标和大地地理坐标:前者是用天文测量方法确定的,后者是用大地测量方法确定的。二、各种常用测量坐标系的建立经纬度具有深刻的地理意义,它标示地物位置,显示地理方位(经线与东西对应,纬线与南北对应),表示时差。此外,经纬线还表示许多地理现象所处的地理带,如气候、土壤及其它部门,都利用经纬度来联系地理规律等。28大地经度(L):参考椭球面上某一点的大地子午面与本初子午面间的两面角。东经:正,西经:负。取值为0º~180º。大地纬度(B):参考椭球面上某一点的法线与赤道面的夹角。北纬:正,南纬:负。取值为0º~90º大地高(H):P点沿法线到椭球面的距离。(1)大地坐标系大地坐标系这里是指大地经纬度坐标系,大地坐标系建立在地球椭球上。大地经纬度的基准面和基准线为:参考椭球面和法线。29天文经度:观测点天顶子午面与格林威治天顶子午面间的两面角,或视为一个天体在上述两地的时角差。天文经度在地球上的定义,即本初子午面与观测点之间的两面角。天文纬度:铅垂线与赤道平面间的夹角。天文经纬度取值方法、范围和大地经纬度一致。天文坐标系可以通过天文观测直接测定点位坐标。(2)天文地理坐标(天文经纬度)30(3)地心经纬度地心:地球椭球体的质量中心。地心经度:等同于大地经度。地心纬度:地面点和地心连线与赤道面的夹角。在地理学研究及地图学的小比例尺制图等工作中,由于精度要求不高,通常将椭球体看作正球体,经纬度采用地心经纬度。312、空间直角坐标系如图,在地球椭球上建立三维直角坐标系O-XYZ:坐标系的原点位于椭球的中心,Z轴与椭球的短轴重合,指向北极,X轴指向起始大地子午面与赤道面的交点,Y轴与XZ平面正交,O-XYZ构成右手坐标系。这样,X、Y、Z就唯一的确定了地面P点的位置。空间直角坐标系可分为地心空间直角坐标系和参心空间直角坐标系。通常所说的地心坐标系往往指的是地心空间大地直角坐标系,如美国GPS系统采用的WGS-84世界大地坐标系。323、平面直角坐标系经纬度坐标系不是平面坐标系,而且度不是标准的长度单位,给识图、用图带来很大不便,因此需建立平面直角坐标系。17世纪,法国笛卡儿发明平面直角坐标系。在平面上选一点O为直角坐标原点,过该点O作相互垂直的两轴OX和OY而建立平面直角坐标系,如图所示(注意和笛卡尔坐标系的区别)。直角坐标系中,规定OX、OY方向为正值,因此在坐标系中的一个已知点P,它的位置便可由该点对OX与OY轴的垂线长度唯一地确定,即x=AP,y=BP,通常记为P(xP,yP)。普遍采用的是高斯平面直角坐标系。OBPYXAYPXP33和笛卡儿坐标系相似,但以X轴为纵轴,以Y轴为横轴。34要将椭球面上的客观世界表现在有限的平面上,首先要实现由球面到平面的转换(地图投影),其次是比例尺的转换。如何转换?一、为什么要进行地图投影§3高斯平面直角坐标系35二、高斯平面直角坐标系1、高斯-克吕格(Gauss_Krivger)投影简称高斯投影,德国测量学家高斯1825-1830年首先提出,1912年德国另一测量学家克吕格提出实用计算公式。其投影方法是:设想用一个椭圆柱横切于椭球面上某一子午线(称中央子午线)