2-3-3_列不定方程解应用题题库学生版

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2-3-3.列不定方程解应用题.题库学生版page1of61、熟练掌握不定方程的解题技巧2、能够根据题意找到等量关系设未知数解方程3、学会解不定方程的经典例题一、知识点说明历史概述不定方程是数论中最古老的分支之一.古希腊的丢番图早在公元3世纪就开始研究不定方程,因此常称不定方程为丢番图方程.中国是研究不定方程最早的国家,公元初的五家共井问题就是一个不定方程组问题,公元5世纪的《张丘建算经》中的百鸡问题标志着中国对不定方程理论有了系统研究.宋代数学家秦九韶的大衍求一术将不定方程与同余理论联系起来.考点说明在各类竞赛考试中,不定方程经常以应用题的形式出现,除此以外,不定方程还经常作为解题的重要方法贯穿在行程问题、数论问题等压轴大题之中.在以后初高中数学的进一步学习中,不定方程也同样有着重要的地位,所以本讲的着重目的是让学生学会利用不定方程这个工具,并能够在以后的学习中使用这个工具解题。二、运用不定方程解应用题步骤1、根据题目叙述找到等量关系列出方程2、根据解不定方程方法解方程3、找到符合条件的模块一、不定方程与数论【例1】把2001拆成两个正整数的和,一个是11的倍数(要尽量小),一个是13的倍数(要尽量大),求这两个数.【巩固】甲、乙二人搬砖,甲搬的砖数是18的倍数,乙搬的砖数是23的倍数,两人共搬了300块砖.问:甲、乙二人谁搬的砖多?多几块?例题精讲知识精讲教学目标2-3-3列不定方程解应用题2-3-3.列不定方程解应用题.题库学生版page2of6【巩固】现有足够多的5角和8角的邮票,用来付4.7元的邮资,问8角的邮票需要多少张?【例2】(2008年北大附中“资优博雅杯”数学竞赛)用十进制表示的某些自然数,恰等于它的各位数字之和的16倍,则满足条件的所有自然数之和为___________________.模块二、不定方程与应用题【例3】有两种不同规格的油桶若干个,大的能装8千克油,小的能装5千克油,44千克油恰好装满这些油桶.问:大、小油桶各几个?【例4】在一次活动中,丁丁和冬冬到射击室打靶,回来后见到同学“小博士”,他们让“小博士”猜他们各命中多少次.“小博士”让丁丁把自己命中的次数乘以5,让冬冬把自己命中的次数乘以4,再把两个得数加起来告诉他,丁丁和冬冬算了一下是31,“小博士”正确地说出了他们各自命中的次数.你知道丁丁和冬冬各命中几次吗?【巩固】某人打靶,8发共打了53环,全部命中在10环、7环和5环上.问:他命中10环、7环和5环各几发?【例5】某次聚餐,每一位男宾付130元,每一位女宾付100元,每带一个孩子付60元,现在有13的成人各带一个孩子,总共收了2160元,问:这个活动共有多少人参加(成人和孩子)?【巩固】单位的职工到郊外植树,其中有男职工,也有女职工,并且有13的职工各带一个孩子参加.男职工每人种13棵树,女职工每人种10棵树,每个孩子都种6棵树,他们一共种了216棵树,那么其中有多少名男职工?【例6】张师傅每天能缝制3件上衣,或者9件裙裤,李师傅每天能缝制2件上衣,或者7件裙裤,两人20天共缝制上衣和裙裤134件,那么其中上衣是多少件?【巩固】小花狗和波斯猫是一对好朋友,它们在早晚见面时总要叫上几声表示问候.若是早晨见面,小花狗叫两声,波斯猫叫一声;若是晚上见面,小花狗叫两声,波斯猫叫三声.细心的小娟对它们的叫声统计了15天,发现它们并不是每天早晚都见面.在这15天内它们共叫了61声.问:波斯猫至少叫了多少声?2-3-3.列不定方程解应用题.题库学生版page3of6【例7】甲、乙两人生产一种产品,这种产品由一个A配件与一个B配件组成.甲每天生产300个A配件,或生产150个B配件;乙每天生产120个A配件,或生产48个B配件.为了在10天内生产出更多的产品,二人决定合作生产,这样他们最多能生产出多少套产品?【巩固】某服装厂有甲、乙两个生产车间,甲车间每天能生产上衣16件或裤子20件;乙车间每天能生产上衣18件或裤子24件.现在要上衣和裤子配套,两车间合作21天,最多能生产多少套衣服?【例8】有一项工程,甲单独做需要36天完成,乙单独做需要30天完成,丙单独做需要48天完成,现在由甲、乙、丙三人同时做,在工作期间,丙休息了整数天,而甲和乙一直工作至完成,最后完成这项工程也用了整数天,那么丙休息了天.【例9】实验小学的五年级学生租车去野外开展“走向大自然,热爱大自然”活动,所有的学生和老师共306人恰好坐满了5辆大巴车和3辆中巴车,已知每辆中巴车的载客人数在20人到25人之间,求每辆大巴车的载客人数.【巩固】实验小学的五年级学生租车去野外开展“走向大自然,热爱大自然”活动,所有的学生和老师共306人恰好坐满了7辆大巴车和2辆中巴车,已知每辆中巴车的载客人数在20人到25人之间,求每辆大巴车的载客人数.【巩固】每辆大汽车能容纳54人,每辆小汽车能容纳36人.现有378人,要使每个人都上车且每辆车都装满,需要大、小汽车各几辆?【巩固】小伟听说小峰养了一些兔和鸡,就问小峰:“你养了几只兔和鸡?”小峰说:“我养的兔比鸡多,鸡兔共24条腿.”那么小峰养了多少兔和鸡?【例10】(1999年香港保良局亚洲区城市小学数学邀请赛)一个家具店在1998年总共卖了213张床.起初他们每个月卖出25张床,之后每个月卖出16张床,最后他们每个月卖出20张床.问:他们共有多少个月是卖出25张床?【例11】(2008年“希望杯”第二试试题)五年级一班共有36人,每人参加一个兴趣小组,共有A、B、C、D、E五个小组.若参加A组的有15人,参加B组的人数仅次于A组,参加C组、D组的人数相同,参加E组的人数最少,只有4人.那么,参加B组的有_______人.【例12】(2008年全国小学生“我爱数学夏令营”数学竞赛)将一群人分为甲乙丙三组,每人都必在且2-3-3.列不定方程解应用题.题库学生版page4of6仅在一组.已知甲乙丙的平均年龄分为37,23,41.甲乙两组人合起来的平均年龄为29;乙丙两组人合起来的平均年龄为33.则这一群人的平均年龄为.【例13】14个大、中、小号钢珠共重100克,大号钢珠每个重12克,中号钢珠每个重8克,小号钢珠每个重5克.问:大、中、小号钢珠各有多少个?【巩固】袋子里有三种球,分别标有数字2,3和5,小明从中摸出12个球,它们的数字之和是43.问:小明最多摸出几个标有数字2的球?【例14】公鸡1只值钱5,母鸡一只值钱3,小鸡三只值钱1,今有钱100,买鸡100只,问公鸡、母鸡、小鸡各买几只?【巩固】小明玩套圈游戏,套中小鸡一次得9分,套中小猴得5分,套中小狗得2分.小明共套了10次,每次都套中了,每个小玩具都至少被套中一次,小明套10次共得61分.问:小明至多套中小鸡几次?【例15】开学前,宁宁拿着妈妈给的30元钱去买笔,文具店里的圆珠笔每支4元,铅笔每支3元.宁宁买完两种笔后把钱花完.请问:她一共买了几支笔?【巩固】(迎春杯预赛试题)小华和小强各用6角4分买了若干支铅笔,他们买来的铅笔中都是5分一支和7分一支的两种,而且小华买来的铅笔比小强多.小华比小强多买来铅笔多少支.【例16】蓝天小学举行“迎春”环保知识大赛,一共有100名男、女选手参加初赛,经过初赛、复赛,最后确定了参加决赛的人选.已知参加决赛的男选手的人数,占初赛的男选手人数的20%;参加决赛的女选手的人数,占初赛的女选手人数的12.5%,而且比参加初赛的男选手的人数多.参加决赛的男、女选手各有多少人?【巩固】今有桃95个,分给甲、乙两班学生吃,甲班分到的桃有29是坏的,其他是好的;乙班分到的桃有316是坏的,其他是好的.甲、乙两班分到的好桃共有几个?2-3-3.列不定方程解应用题.题库学生版page5of6【例17】甲、乙两人各有一袋糖,每袋糖都不到20粒.如果甲给乙一定数量的糖后,甲的糖就是乙的2倍;如果乙给甲同样数量的糖后,甲的糖就是乙的3倍.甲、乙两人共有多少粒糖?【巩固】有两小堆砖头,如果从第一堆中取出100块放到第二堆中去,那么第二堆将比第一堆多一倍.如果相反,从第二堆中取出若干块放到第一堆中去,那么第一堆将是第二堆的6倍.问:第一堆中的砖头最少有多少块?【例18】(第六届华杯赛复赛第16题)甲乙丙三个班向希望工程捐赠图书,已知甲班有1人捐6册,有2人各捐7册,其余都各捐11册,乙班有1人捐6册,3人各捐8册,其余各捐10册;丙班有2人各卷4册,6人各捐7册,其余各捐9册。已知甲班捐书总数比乙班多28册,乙班比丙班多101册,各班捐书总数在400册与550册之间,问各班各有多少人?【例19】(2009年“迎春杯”高年级组复赛)在新年联欢会上,某班组织了一场飞镖比赛.如右图,飞镖的靶子分为三块区域,分别对应17分、11分和4分.每人可以扔若干次飞镖,脱靶不得分,投中靶子就可以得到相应的分数.若恰好投在两块(或三块)区域的交界线上,则得两块(或三块)区域中分数最高区域的分数.如果比赛规定恰好投中120分才能获奖,要想获奖至少需要投中次飞镖.模块三、不定方程与生活中的应用题【例20】某地用电收费的标准是:若每月用电不超过50度,则每度收5角;若超过50度,则超出部分按每度8角收费.某月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?【巩固】某区对用电的收费标准规定如下:每月每户用电不超过10度的部分,按每度0.45元收费;超过10度而不超过20度的部分,按每度0.80元收费;超过20度的部分按每度1.50元收费.某月甲用户比乙用户多交电费7.10元,乙用户比丙用户多交3.75元,那么甲、乙、丙三用户共交电费多少元?(用电都按整度数收费)【例21】马小富在甲公司打工,几个月后又在乙公司兼职,甲公司每月付给他薪金470元,乙公司每月付给他薪金350元.年终,马小富从两家公司共获薪金7620元.他在甲公司打工个月,在乙公司兼职个月.【例22】甲、乙、丙、丁、戊五人接受了满分为10分(成绩都是整数)的测验.已知:甲得了4分,乙得2-3-3.列不定方程解应用题.题库学生版page6of6了最高分,丙的成绩与甲、丁的平均分相等,丁的成绩刚好等于五人的平均分,戊比丙多2分.求乙、丙、丁、戊的成绩.【巩固】有两个学生参加4次数学测验,他们的平均分数不同,但都是低于90分的整数.他们又参加了第5次测验,这样5次的平均分数都提高到了90分.求第5次测验两人的得分.(每次测验满分为100分)【例23】小明、小红和小军三人参加一次数学竞赛,一共有100道题,每个人各解出其中的60道题,有些题三人都解出来了,我们称之为“容易题”;有些题只有两人解出来,我们称之为“中等题”;有些题只有一人解出来,我们称之为“难题”.已知每个题都至少被他们中的一人解出,则难题比容易题多道.【例24】甲、乙两个同学在一次数学擂台赛中,试卷上有解答题、选择题、填空题各若干个,而且每个小题的分值都是自然数.结果公布后,已知甲做对了5道解答题,7道选择题,9道填空题,共得52分;乙做对了7道解答题,9道选择题,11道填空题,共得68分.问:解答题、选择题、填空题的每道小题各多少分?【例25】(2007年“我爱数学夏令营”数学竞赛)甲乙丙三人参加一个共有30个选择题的比赛,计分办法是在30分的基础上,每答对一题加4分,答错一题扣1分,不答既不扣分也不加分.赛完后发现根据甲所得总分可以准确算出他答对的题数,乙、丙二人所得总分相同,仅比甲少1分,但乙丙答对的题数却互不相同.由此可知,甲所得总分最多为.【例26】某男孩在2003年2月16日说:“我活过的月数以及我活过的年数之差,到今天为止正好就是111.”请问:他是在哪一天出生的?【例27】某次演讲比赛,原定一等奖10人,二等奖20人,现将一等奖中的最后4人调整为二等奖,这样得二等奖的学生的平均分提高了1分,得一等奖的学生的平均分提高了3分,那么原来一等奖平均分比二等奖平均分多________分.【例28】某次数学竞赛准备了35支铅笔作为奖品发给一、二、三等奖的学生,原计划一等奖每人发给6支,二等奖每人发给3支,三等

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功