2-均匀电场中球形介质的电场分布的Mathematica仿真-课程设计说明书

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

淮南师范学院课程设计说明书-I-课程设计说明书设计题目:半导体激光器可饱和吸收晶体被动调Q实现学生学号:1106020103学生姓名:陈丽指导教师:张科起止日期:2014.~2014.物理与电子信息系光电信息科学与工程专业均匀电场中球形介质的电场分布的Mathematica仿真-II-摘要本文首先利用分离变量法求解均匀电场中球形介质静电场的拉普拉斯方程,根据边界条件得出具体的分析解。然后,利用Mathematica程序求解均匀电场中球形介质的电场分布,并绘制电场的空间分布的矢量图。本文的特点是:数学上的分析解不能直观地给出静电场的矢量图;利用Mathematica程序绘制的电场空间分布的矢量图具有直观性。关键词:静电场的拉普拉斯方程;球形介质;Mathematica仿真淮南师范学院课程设计说明书-III-目录第1章Mathematica软件...........................................11.1Mathematica简介...............................................11.2Mathematica运算...............................................2第2章分离变量法求解静电场.......................................42.1拉普拉斯方程的分析解...........................................42.2均匀电场中球形介质的电场分布...................................5第3章Mathematica仿真...........................................7程序............................................................12参考文献........................................................14致谢............................................................15淮南师范学院课程设计说明书-1-第1章Mathematica软件第1章Mathematica软件1.1Mathematica简介Mathematica是美国WolframResearch公司开发的数学软件。它的主要使用者是从事理论研究的数学工作者和其它科学工作者、以及从事实际工作的工程技术人员。Mathematica可以用于解决各种领域的涉及复杂的符号计算和数值计算的问题。对以前必须借助于手工推导才能解决的问题,现在可以很方便地用计算机来完成。Mathematica是一款科学计算软件,很好地结合了数值和符号计算引擎、图形系统、编程语言、文本系统、和与其他应用程序的高级连接。很多功能在相应领域内处于世界领先地位,截至2009年,它也是为止使用最广泛的数学软件之一。Mathematica的发布标志着现代科技计算的开始。Mathematica是世界上通用计算系统中最强大的系统。自从1988发布以来,它已经对如何在科技和其它领域运用计算机产生了深刻的影响。Mathematica主要可以做数值运算、符号运算和图像处理三项工作。尤其在符号演算工作中,显示了它的强大功能。它能对符号进行多项式的计算、因式分解、展开,以及求解方程、极限、导数、积分等。它也能进行数值的或一般代数式的向量、矩阵的各种计算。用Mathematica可以很方便地画出用各种方式表示的一元和二元函数的图形。通过这样的图形,我们可以立即形象地把握住函数的某些特性,而这些特征一般很难从函数的符号表达式中看清楚。Mathematica还是一个很容易扩充和修改的系统,它提供了一套描述方法,相当于一个编程语言,用这个语言可以写程序,解决各种特殊问题。Mathematica和MATLAB、Maple并称为三大数学软件。1.2Mathematica运算如果在Windows环境下已安装好Mathematica5.0,启动Windows后,在“开始”菜单的“程序”中单击Mathematica5.0,在屏幕上显示如图的Notebook窗口,系统暂时取名Untitled-1,直到用户保存时重新命名为止。Mathematica的基本语法特点:(1)Mathematica中大写小写是有区别的,如plot、Plot是不同的变量名或函数名。自定义的变量可以取几乎任意的名称,长度不限,但不可以数字开头。Mathematica中的函数分为两类,均匀电场中球形介质的电场分布的Mathematica仿真-2-一类是常用的数学函数,如:绝对值函数Abs[x],正弦函数Sin[x],余弦函数Cos[x],以e为底的对数函数Log[x],以a为底的对数函数Log[a,x]等;第二类是命令意义上的函数,如作函数图形的函数Plot[f[x],{x,xmin,xmax}],解方程函数Solve[eqn,x],求导函数D[f[x],x]等。(2)在Mathematica中,我们应注意四种括号的用法:()圆括号表示项的结合顺序[]方括号表示函数,如Log[x],BesselJ[x,1];{}大括号表示一个“表”(一组数字、任意表达式、函数等的;集合),如{2x,Sin[12Pi],{1+A,y*x}};[[]]双方括号表示“表”或“表达式”的下标,如a[[2,3]]、{a,b,c}[[1]]=a。(3)Mathematica还定义了一些系统常数,如Pi表示圆周率的精确值,还有E表示自然对数的底数、I表示复数单位,Degree表示角度一度,Pi/180,Infinity表示无穷大等,这些常数在运算中发挥了重要的作用。(4)乘法即可以用*,又可以用空格表示,如23=2*3=6,xy,2Sin[x]等;乘幂可以用“^”表示,如x^4,Tan[x]^y。(5)在输入语句时,以分号结束的语句行或表达式,Mathematica默认不显示计算结果,否则将输出计算的结果。(6)要想查询某一函数的具体用法可在Notebook界面下,用?或??可向系统查询运算符、函数和命令的定义和用法,获取简单而直接的帮助信息。也可用Options[函数名]查询。当然,要想主动地去了解更多的函数,可在Mathematica界面上单击帮助菜单项的HelpBrowser,可了解有关函数的更多信息。代数运算:(1)数的表示及计算在Notebook界面上,可以对大量数值进行计算,Mathematica总会以非常精确的形式输出结果。例如127+533431231如果要想得到近似值可用求值函数N[expr,n],expr是数值表达式,n是有效数值的位数。N127533,301.86580086580086580086580086580淮南师范学院课程设计说明书-3-Mathematica许多函数直接可以用来做数值计算,例如求方程数值解函数NSolve、数值积分函数NIntegrate、数值求和函数NSum等等。(2)变量与变量赋值在Mathematica中,给变量赋值常用“=”表示,我们既可以给变量赋数字值,也可以给变量赋符号值。例如让x赋值5,而y赋值a。x=5;y=a;则在以后的运算中,当需调用x或y的表达式时,Mathematica将用所赋的值替代它们,例如x^2+y^2如果你需要用到上一步的运算结果,可以用%代替整个上一步的运算结果,事实上,你也可以用以前运算的第n次结果如%%表示倒数第二次的运算结果。%+b25+a2+b另一种变量赋值类似于变量的替换,用(/.)表示,例如在代数式4x^2+2中进行x2的替换4x^2+2/.x218表达式273xx由xab代替x^2-7x+3/.xa+b37abab2在同一行中可以输入多个语句,语句之间用(;)分开。当你需要Mathematica进行运算而不需要对结果输出时,可以在表达式后面放一个分号(;)(3)函数的定义在Mathematica中,函数的定义是用“:=”表示。例如f[x_]:=x^2+6定义以后,Mathematica会自动使用己定义的规则,例如求x=a+b时的f[x]值f[a+b]6ab225+a2均匀电场中球形介质的电场分布的Mathematica仿真-4-第2章分离变量法求解静电场应用分离变量法求解拉普拉斯方程,具体的步骤是:首先在选定的坐标系下,将电位函数表示为三个未知函数的乘积,其中每个函数只含一个坐标变量。将三个未知函数般乘积代入拉普拉斯方程,从而分离出三个常微分方程,由它们的解的乘积可构成电位函数的级数形式通解。然后再根据绐定的边界条件来确定通解中的待定系数。2.1拉普拉斯方程的分析解直角坐标系中拉普拉斯方程为2222220VVVxyz(2-1)设位函数V(x,y,z)为三个函数的乘积,即(,,)()()()VxyzXxYyZz(2-2)则可求得拉普拉斯方程的解为123456(,,)()()()()()()VxyzaaxaayaazXxYyZz(2-3)()sin()cos()xxXxAkxBkx20xk(2-4)()sin()cos()yyYyCkyDky20yk(2-5)()s()c()zzZzFhkzGhkz20zk(2-6)式中,,xyzkkk为分离常数,且满足2220xyzkkk(2-7)需要指出的是,式中k可以是实数,也可以为虚数。应当指出中任何两个如为实数,其余一个必为虚数。即X(x),Y(y)和Z(z)中必有两个为三角函数而其余一个为双曲函数。有时将双曲函数解淮南师范学院课程设计说明书-5-写成指数形式解是方便的。为满足边界条件,分离常数常常需取一系列值,形成级数解。若电位与某个量(如z)无关,则解的形式可简化成二维。在球坐标系中,标量电位V的拉普拉斯方程为2222222111()(sin)0sinsinVVVRRRRRR(2-8)当电位与方位角无关时,拉普拉斯方程的通解为10()(cos)nnnnnnBVARPR(2-9)(cos)nP为勒让德多项式,nA和nB是待定常数由具体问题的边界条件给出。2.2均匀电场中球形介质的电场分布一半径为a介电常数为的介质球放置在均匀电场0E中。求介质球内、外的电位及电场。解:介质球外电位1V和球内电位2V满足拉普拉斯方程,它们都具有轴对称性,其通解分别为11cosnnnnnnbaRPR(2-10)21cosnnnnnndcRPR(2-11)其中,,,nnnnabcd是待定系数。电位的边界条件是(1)10,cosRVER(2)20,RV为有限值(3)12:RaVV120()()VVRR由边界条件(1)可得10,0;1naEan(2-12)均匀电场中球形介质的电场分布的Mathematica仿真-6-由边界条件(2)可得0nd(2-13)由边界条件(3)可得30010010003,22bERcE0;1nnbcn(2-14)所有常数已经确定,解为30001020coscos2ERERR,02003cos2ER。(2-15)淮南师范学院课程设计说明书-7-第3章Mathematica仿真Mathematica仿真程序如下。程序顶格,输出结果居中并标有公式数码。解:介质球外电位1V和球内电位2V满足拉普拉斯方程,它们都具有轴对称性,其通解分别为Clear[Global`*]V1SumAnR^nBnR^n1pn,n,0,mV2SumCnR^nDnR^n1pn,n,0,mn0mAnRnBnRn1pnn0mCnRnDnRn1pn(2-16)电位的边界条件是(1)10,co

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功