2008年高考数学(理科)试题分类汇编概率与统计

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

-1-2008年高考数学试题分类汇编概率与统计一.选择题:1.(安徽卷10).设两个正态分布2111()(0)N,和2222()(0)N,的密度函数图像如图所示。则有(A)A.1212,B.1212,C.1212,D.1212,2.(山东卷7)在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为B(A)511(B)681(C)3061(D)40813.(山东卷8)右图是根据《山东统计年整2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为(A)304.6(B)303.6(C)302.6(D)301.64.(江西卷11)电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率为CA.1180B.1288C.1360D.14805.(湖南卷4)设随机变量服从正态分布(2,9)N,若(1)(1)PcPc,则c=(B)A.1B.2C.3D.46.(重庆卷5)已知随机变量服从正态分布N(3,a2),则P(3)=D(A)15(B)14(C)13(D)127.(福建卷5)某一批花生种子,如果每1粒发牙的概率为45,那么播下4粒种子恰有2粒发芽的概率是B-2-A.16625B.96625C.192625D.2566258.(广东卷2)记等差数列{}na的前n项和为nS,若112a,420S,则6S(D)A.16B.24C.36D.489.(辽宁卷7)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为(C)A.13B.12C.23D.34二.填空题:1.(天津卷11)一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工________________人.102.(上海卷7)在平面直角坐标系中,从六个点:A(0,0)、B(2,0)、C(1,1)、D(0,2)、E(2,2)、F(3,3)中任取三个,这三点能构成三角形的概率是34(结果用分数表示)3.(上海卷9)已知总体的各个体的值由小到大依次为2,3,3,7,a,b,12,13.7,18.3,20,且总体的中位数为10.5,若要使该总体的方差最小,则a、b的取值分别是10.5和10.5;4.(江苏卷2)一个骰子连续投2次,点数和为4的概率.1125.(江苏卷6)在平面直角坐标系xoy中,设D是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E是到原点的距离不大于1的点构成的区域,向D中随机投一点,则落入E中的概率.166.(湖南卷15)对有n(n≥4)个元素的总体1,2,,n进行抽样,先将总体分成两个子总体1,2,,m和1,2,,mmn(m是给定的正整数,且2≤m≤n-2),再从每个子总体中各随机抽取2个元素组成样本.用ijP表示元素i和j同时出现在样本中的概率,则1nP=;所有ijP(1≤i<j≤n的和等于.4()mnm,6三.解答题:1.(全国一20).(本小题满分12分)(注意:在试题卷上作答无效.........)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:-3-方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)表示依方案乙所需化验次数,求的期望.解:(Ⅰ)对于甲:次数12345概率0.20.20.20.20.2对于乙:次数234概率0.40.40.20.20.40.20.80.210.210.64.(Ⅱ)表示依方案乙所需化验次数,的期望为20.430.440.22.8E.2.(全国二18).(本小题满分12分)购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10000元的赔偿金.假定在一年度内有10000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10000元的概率为41010.999.(Ⅰ)求一投保人在一年度内出险的概率p;(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).解:各投保人是否出险互相独立,且出险的概率都是p,记投保的10000人中出险的人数为,则4~(10)Bp,.(Ⅰ)记A表示事件:保险公司为该险种至少支付10000元赔偿金,则A发生当且仅当0,2分()1()PAPA1(0)P4101(1)p,又410()10.999PA,故0.001p.······························································································5分(Ⅱ)该险种总收入为10000a元,支出是赔偿金总额与成本的和.-4-支出1000050000,盈利10000(1000050000)a,盈利的期望为100001000050000EaE,··········································9分由43~(1010)B,知,31000010E,4441010510EaE4443410101010510a.0E≥4441010105100a≥1050a≥15a≥(元).故每位投保人应交纳的最低保费为15元.·························································12分3.(北京卷17).(本小题共13分)甲、乙等五名奥运志愿者被随机地分到ABCD,,,四个不同的岗位服务,每个岗位至少有一名志愿者.(Ⅰ)求甲、乙两人同时参加A岗位服务的概率;(Ⅱ)求甲、乙两人不在同一个岗位服务的概率;(Ⅲ)设随机变量为这五名志愿者中参加A岗位服务的人数,求的分布列.解:(Ⅰ)记甲、乙两人同时参加A岗位服务为事件AE,那么3324541()40AAPECA,即甲、乙两人同时参加A岗位服务的概率是140.(Ⅱ)记甲、乙两人同时参加同一岗位服务为事件E,那么4424541()10APECA,所以,甲、乙两人不在同一岗位服务的概率是9()1()10PEPE.(Ⅲ)随机变量可能取的值为1,2.事件“2”是指有两人同时参加A岗位服务,则235334541(2)4CAPCA.所以3(1)1(2)4PP,的分布列是13P3414-5-4.(四川卷18).(本小题满分12分)设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。(Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;(Ⅱ)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(Ⅲ)记表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求的分布列及期望。【解】:记A表示事件:进入商场的1位顾客购买甲种商品,记B表示事件:进入商场的1位顾客购买乙种商品,记C表示事件:进入商场的1位顾客购买甲、乙两种商品中的一种,记D表示事件:进入商场的1位顾客至少购买甲、乙两种商品中的一种,(Ⅰ)CABABPCPABABPABPABPAPBPAPB0.50.40.50.60.5(Ⅱ)DABPDPABPAPB0.50.40.210.8PDPD(Ⅲ)3,0.8B,故的分布列300.20.008P12310.80.20.096PC22320.80.20.384PC330.80.512P所以30.82.4E5.(天津卷18)(本小题满分12分)甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为21与p,且乙投球2次均未命中的概率-6-为161.(Ⅰ)求乙投球的命中率p;(Ⅱ)求甲投球2次,至少命中1次的概率;(Ⅲ)若甲、乙两人各投球2次,求两人共命中2次的概率.解:本小题主要考查随机事件、互斥事件、相互独立事件等概率的基础知识,考查运用概率知识解决实际问题的能力.满分12分.(Ⅰ)解法一:设“甲投球一次命中”为事件A,“乙投球一次命中”为事件B.由题意得1611122pBP解得43p或45(舍去),所以乙投球的命中率为43.解法二:设设“甲投球一次命中”为事件A,“乙投球一次命中”为事件B.由题意得1()()16PBPB,于是1()4PB或1()4PB(舍去),故31()4pPB.所以乙投球的命中率为34.(Ⅱ)解法一:由题设和(Ⅰ)知21,21APAP.故甲投球2次至少命中1次的概率为431AAP解法二:由题设和(Ⅰ)知21,21APAP故甲投球2次至少命中1次的概率为4312APAPAPAPC(Ⅲ)由题设和(Ⅰ)知,41,43,21,21BPBPAPAP甲、乙两人各投球2次,共命中2次有三种情况:甲、乙两人各中一次;甲中两次,乙两次均不中;甲两次均不中,乙中2次。概率分别为1631212BPBPCAPAPC,641BBPAAP,649BBPAAP所以甲、乙两人各投两次,共命中2次的概率为3211649641163.6.(安徽卷19).(本小题满分12分)为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物。某人一次种植了n株沙柳,各株沙柳成活与否是相互独立的,成活率为p,设为成活沙柳的株数,数学期望3E,标准差为62。(Ⅰ)求n,p的值并写出的分布列;(Ⅱ)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率-7-解:(1)由233,()(1),2Enpnpp得112p,从而16,2np的分布列为0123456P164664156420641564664164(2)记”需要补种沙柳”为事件A,则()(3),PAP得16152021(),6432PA或156121()1(3)16432PAP7.(山东卷18)(本小题满分12分)甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分。假设甲队中每人答对的概率均为32,乙队中3人答对的概率分别为21,32,32且各人正确与否相互之间没有影响.用ε表示甲队的总得分.(Ⅰ)求随机变量ε分布列和数学期望;(Ⅱ)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB).(Ⅰ)解法一:由题意知,ε的可能取值为0,1,2,3,且所以ε的分布列为ε0123P

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功