安博教育网址:上海安博京翰教育研究院-1/10-安博京翰教育成就孩子未来Ambowguideskidstoownabrilliantfuture2012年K8(下)数学第二十一章不等式(组)复习课教案教师姓名:管习光年级:八年级学员姓名:薛晨韵课次:总课次,第5次授课时间2012年5月26日(星期六)15时00分至17时00分课题不等式与不等式组教学目标及重难点教学目标:了解一般不等式的解、解集及解不等式的概念,然后具体研究了一元一次不等式的解、解集、一元一次不等式的解法以及一元一次不等式的简单应用等.通过具体实例渗透一元一次不等式与一元一次方程的内在联系.最后研究一元一次不等式组的解、解集、一元一次不等式组的解法以及一元一次不等式组的简单应用等.教学重点:能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质.会解简单的一元一次不等式,能在数轴上表示出不等式的解集,会解一元一次不等式组,并会用数轴确定其解集.能够根据具体问题中的不等关系,列出一元一次不等式或一元一次不等式组解决简单的问题.教学难点:能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质;会解简单的一元一次不等式,并能在数轴上表示出解集,会解由两个一元一次不等式组成的不等式组,并用数轴确定解集.能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组解决简单的实际问题.课前检查作业完成情况:优□良□中□差□建议:教学步骤安博教育网址:上海安博京翰教育研究院-2/10-安博京翰教育成就孩子未来Ambowguideskidstoownabrilliantfuture一.知识网络结构图二.考点梳理考点一、不等式的概念1、不等式用不等号表示不等关系的式子,叫做不等式。2、不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。求不等式的解集的过程,叫做解不等式。3、用数轴表示不等式的方法考点二、不等式基本性质1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。考试题型:考点三、一元一次不等式1、一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。2、一元一次不等式的解法解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1安博教育网址:上海安博京翰教育研究院-3/10-安博京翰教育成就孩子未来Ambowguideskidstoownabrilliantfuture考点四、一元一次不等式组1、一元一次不等式组的概念几个一元一次不等式合在一起,就组成了一个一元一次不等式组。几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。求不等式组的解集的过程,叫做解不等式组。当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。2、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。三.专题总结及应用一、知识性专题专题1不等式(组)的实际应用【专题解读】利用不等式(组)解决实际问题的步骤与列一元一次不等式解应用题的步骤类似,所不同的是,前者需寻求的不等关系往往不止一个,而后者只需找出一个不等关系即可.在列不等式(组)时,审题是基础,根据不等关系列出不等式组是关键.解出不等式组的解集后,要养成检验不等式的解集是否合理,是否符合实际情况的习惯.即审题→设一个未知数→找出题中所有的数量关系,列出不等式组→解不等式组→检验.例12008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A种船票600元/张,B种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A,B两种船票共15张,要求A种船票的数量不少于B种船票数量的一半.若设购买A种船票x张,请你解答下列问题.(1)共有几种符合题意的购票方案?写出解答过程.(2)根据计算判断哪种购票方案更省钱.解:(1)由题意知购买B种船票(15-x)张.根据题意,得15,2600120(15)5000.xxxx解得205.3x安博教育网址:上海安博京翰教育研究院-4/10-安博京翰教育成就孩子未来Ambowguideskidstoownabrilliantfuture因为x为正整数,所以满足条件的x为5或6.所以共有两种购票方案.方案一:购买A种票5张,B种票10张.方案二:购买A种票6张,B种票9张.(2)方案一的购票费用为600×5+120×10=4200(元);方案二的购票费用为600×6+120×9=4680(元).因为4500元4680元,所以方案一更省钱.【解题策略】运用不等式知识解决实际问题,关键是把实际问题的文字语言转化为数学符号语言.二、规律方法专题专题2求一元一次不等式(组)的特殊值【专题解读】在此类问题中,一般给出一个一元一次不等式(组),然后在解集的范围内限制取值,解决的方法通常是先求出不等式(组)的解集,再由题意求出符合条件的数值.例2求不等式12123xx的非负整数解.分析先解不等式,求出x的取值范围,在x的取值范围内找出非负整数解,求非负整数解时注意不要漏解.解:解不等式12123xx,得x≤5.所以不等式的非负整数解是5,4,3,2,1,0.【解题策略】此题不能忽略0的答案.专题3一元一次不等式(组)中求参数的技巧【专题解读】由已知不等式(组)的解集或整数解来确定选定系数的值或待定系数的取值范围,常用的方法是先用解不等式(组)的方法解出含待定系数的不等式(组)的解集,再代入已给出的条件中,即可求出待定系数的值.例3已知关于x的不等式组0,245xbx的整数解共有3个,则b的取值范围是______.分析化简不等式组,得,4.5.xbx如图9-59所示,将其表示在数轴上,其整数解有3个,即为x=5,6,7.由图可知7≤b8.故填7≤b8.安博教育网址:上海安博京翰教育研究院-5/10-安博京翰教育成就孩子未来Ambowguideskidstoownabrilliantfuture例4已知关于x的不等式(2-a)x3的解集为32xa,则a的取值范围是()A.a0Ba2C.a0D.a2分析分析题中不等式解集的特点,结合不等式的性质3,可知2-a0,即a2.故选B.三、思想方法专题专题4数形结合思想【专题解读】在解有关不等式的问题时,有些问题需要我们借助图形来给出解答.解决此类问题时,要充分利用图形反馈的信息,或将文字信息反馈到图形上,做到有数思形,有形思数,顺利解决问题.例5关于x的不等式2x-a≤-1的解集如图9-60所示,则a的取值是()A.0B.-3C.-2D.-1分析由图9-60可以看出,不等式的解集为x≤-1,而由不等式2x-a≤-1,解得x≤12a,所以12a=-1,解这个方程,得a=-1.故选D.专题5分类讨论思想【专题解读】在利用不等式(组)解决实际问题中的方案选择、优化设计以及最大利润等问题时,为了防止漏解和便于比较,我们常常用到分类讨论思想对方案的优劣进行探讨.例6某校准备组织290名学生进行野外考察活动,行李共有100件,学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.(1)设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案;安博教育网址:上海安博京翰教育研究院-6/10-安博京翰教育成就孩子未来Ambowguideskidstoownabrilliantfuture(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,那么请你帮助学校选出最省钱的一种租车方案.分析本题考查利用不等式组设计方案并做出决策的问题.根据题中的不等关系可列出不等式组,解不等式组求出x的取值,从而解答本题.解:(1)设租用甲种汽车x辆,则租用乙种汽车(8-x)辆.根据题意得4030(8)290,1020(8)100,xxxx解得5≤x≤6.因为x为整数,所以x=5或x=6.故有两种租车方案,方案一:租用甲种汽车5辆、乙种汽车3辆.方案二、租用甲种汽车6辆、乙种汽车2辆.(2)方案一的费用:5×2000+3×1800=15400(元).方案二的费用:6×2000+2×1800=15600(元).因为15400元15600元,所以方案一最省钱.答:第一种租车方案更节省费用,即租用甲种汽车5辆、乙种汽车3辆.【解题策略】解答设计方案的问题时,要注意不等式组的解集必须符合实际问题的要求,不能把数学问题与实际问题相混淆.综合验收评估测试题一、选择题1.在方程组2,21xymyx中,若未知数x,y满足x+y0,则m的取值范围在数轴上的表示是图9-61中的()2.已知关于x的不等式(1-a)x2的解集为21xa,则a的取值范围是()A.a0B.a1C.a0D.a1安博教育网址:上海安博京翰教育研究院-7/10-安博京翰教育成就孩子未来Ambowguideskidstoownabrilliantfuture3.如果不等式组21,2xmxm的解集是x-1,那么m的值是()A.1B.3C.-1D.-34.若三个连续的自然数的和不大于12,则符合条件的自然数有()A.1组B.2组C.3组D.4组5.已知关于x的不等式组2,1,xxxa无解,则a的取值范围是()A.a≤-1B.a≥2C.-1a2D.a-1,或a26.函数2yx中,自变量x的取值范围是()A.x-2B.x≥-2C.x≠-2D.x≤-27.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cmB.6cmC.5cmD.4cm8.如果ab0,那么下列不等式中错误的是()A.ab0B.a+b0C.ab0D.a-b09.不等式3-2x≤7的解集是()A.x≥-2B.x≤-2C.x≤-5D.x≥-5安博教育网址:上海安博京翰教育研究院-8/10-安博京翰教育成就孩子未来Ambowguideskidstoownabrilliantfuture10.若不等式组0,122xaxx有解,则a的取值范围是()A.x-1B.a≥-1C.a≤1D.a1二、填空题11.若ab,则不等式组0,0xaxb的解集是______.12.当a5时,不等式51axxa的解集是________.13.不等式组324,235xx的解集是_________.14.如果一元一次不等式组3,xxa的解集为x3,那么a的取值范围是______.15.已知一元一次方程3x-m+1=2x-1的根是负数,那么m的取值范围是________.16.若代数式212x的值不小于133x的值,则x的取值范围是________.17.不等式组250,112xx的所有整数解的和是________.18.若关于x的不等式组41,320xxxa