汽车舒适性

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第六章汽车舒适性摘要随着人们生活水平的提高,人们对汽车性能的要求除在动力性、经济性、安全性方面之外,在车辆的舒适性、可靠性、耐久性和安全性等方面的要求也越来越高。良好的驾驶操作性能、舒适的驾乘环境、低振动和低噪声渐渐成为现代汽车的重要标志。同时,从提高工作效率和降低事故发生率的要求出发,汽车的乘坐及工作环境必须具有一定的舒适性。为提高汽车的舒适性,本章主要从汽车平顺性、汽车空气调节性能、汽车乘坐环境和驾驶操作性能四个方面进行了具体分析,并针对每一方面都提出了具体的评价指标,影响因素及实验方法。引言汽车舒适性是指为乘员提供舒适、愉快的乘坐环境、货物的安全运输和方便安全的操作条件的性能。汽车舒适性包括:汽车平顺性、汽车噪声、汽车空气调节性能、汽车乘坐环境及驾驶操作性能等;它是现代高速、高效率汽车的一个主要性能。汽车平顺性就是保持汽车在行驶过程中乘员所处的振动环境具有一定舒适度的性能。对于载货汽车还包括保持货物完好的性能。汽车行驶时,由于路面不平等因素激起汽车的振动。振动影响人的舒适、工作效率和身体健康,并影响所运货物的完好;振动还在汽车上产生动载荷,加速零件磨损,导致疲劳失效。因此,减少汽车振动是汽车平顺性研究的主要问题。汽车空气调节性能是指对车内空气的温度、湿度和粉尘浓度实现控制调节,使车室内空气经常保持使乘员舒适的状态。汽车空调是改善工作条件、提高工作效率的重要手段。汽车乘坐环境及驾驶操作性能是指乘坐空间大小、座椅及操纵件的布置、车内装饰、仪表信号设备的易辨认性等。随着现代文明进程,汽车越来越多地介入了社会的各个方面,成为与人们工作和生活紧密相关的、大众化的产品,汽车作为“活动房间”的功能日趋完善。与汽车其它性能不同,汽车舒适性各方面的评价都与人体主观感觉直接相关。本章将结合汽车人体工程学研究成果,适当介绍必要的相关知识.以期帮助大家树立“人-车-环境”系统研究新概念。第一节汽车平顺性一、人体对振动的反应和平顺性的评价机械振动对人体的影响,既取决于振动频率与强度、振动作用方向和暴露时间,也取决于人的心理、生理状态、而且心理品质和身体素质不同的人,对振动敏感程度有很大差异:因此,人体对振动作用的反应是一个十分复杂的过程。为了评价振动对人体的影响,在振动心理学试验中,一般是将人对振动的感受分为数个不同的感觉等级,如:“无感觉”、“稍有感觉”、“感觉”、“强烈感觉”、“非常强烈感觉“等。取某一频率的正弦振动作为基准。其振动加速度有效值和振动持续时间是一定的,并规定在此条件下的人体承受振动的感觉。然后,在相同持续对间下,改变振动频率和振动加速度有效值,与基准振动比较,当感觉相同时,记录振动频率与振动有效值。如果把产生同样感觉的备点连接起来,即可绘制出人体对振动反应的等感度曲线。20世纪70年代,国际标准化组织(ISO)在综合大量有关人体全身振动的研究成果的基础上,制定了国际标准ISO26314《人体承受全身振动的评价指南》。目前许多国家参照ISO263l4来制定汽车平顺性的评价方法。1.随机振动有关概念图6—1是汽车车厢地板上测得的振动加速度波形。可以看出,振动加速度随时间的变化是不确定的。这种随时间变化的不规则振动叫随机振动。随机振动的规律不能用简单函数或简单函数的组合来表示,只能用概率和统计的方法来描述其内在特性。(1)加速度均方值加速度均方值2msz&&是加速度瞬时值()zt&&的平方对时间域求平均值。其数学表达式为:tmsdttztz022)(1(6-1)均方值有平均功率的含义,它是与平均功率成比例的表征振动强度的一个物理量。(2)加速度均方根值将均方值开方后得到均方根值。加速度均方根值z的数学表达式为:201()tzztdtts=ò&&&&(6-2)加速度均方根值通常亦称为加速度有效值。(3)功率谱密度()Gf随机振动的时间历程是由无限多个频率、相位、强度各不相同的谐振叠加而成的。将随机过程时间域上的一些数字特征转化为频率域上的数字特征来表示,并进行分析,研究振动能量随频率的分布情况,称为频谱分析。随机过程在频率域上常用功率谱密度()Gf来描述。其数学定义为:tftdtfftztffG020),,(11lim)((6-3)式中z&&(,,)tffV——z在频率f~f+fV间隔内的分量;f——频率;fV——频带宽度。实际测量分析中,时间t不可能无限长,频带宽度fV也不可能无限窄。通常只能取有限时间和带宽。故:2()mszGff=D(6-4)由式(6—4)知,()Gf表示频率f~f+fV间隔内均方值密度。由于均方值有平均功率含义,所以称()Gf为曲线功率谱图6-2连续的功率谱密度图6-1车厢地板垂直加速度时间历程密度,其单位为(m/s2)2/Hz。功率谱密度是随机过程最重要的特征之一。如果知道了功率谱密度曲线(见图6—2),则()Gf曲线与f轴所围的总面积就是振动的均方值或平均能量。对某一频率范围内的均方值可按下式计算:21212(,)()tmstzffGfdf=ò&&(6-5)2.ISO2631标准ISO2631标准用加速度均方根值给出了在l~80Hz振动频率范围内人体对振动反应的三个不同界限。①暴露极限。当人体承受的振动强度在这个极限之内,将保持健康或安全。通常把此极限作为人体可以承受振动量的上限。②疲劳-工效降低界限。这个界限与保持工作效能有关。当驾驶员承受的振动强度在此界限之内时,能准确灵敏地反应,正常地进行驾驶。③舒适降低界限。此界限与保持舒适有关,在这个界限之内,人体对所暴露的振动环境主观感觉良好,能顺利完成听、读、写等动作。图6—3是ISO2631给出的用双对数坐标绘制的“疲劳一工效降低界限”。另外两个不同反应界限的振动允许值随频率变化趋势与图6—3曲线形状完全相同,只是振动的允许值不同。“暴露极限”的值为“疲劳一工效降低界限”的2倍,“舒适降低界限”为“疲劳一工效降低界限”的1/3.15倍。从振动心理学角度来看,这三个反应界限相当于人体对振动的感觉的三个等级,三个界限曲线实际上就是三种等感度曲线。图6-3的纵坐标用振动加速度均方根值代表振动强度,横坐标为振动频率,用1/3倍频带中心频率表示。有关1/3倍频带的概念可参见本章第二节中的有关内容。实线曲线和虚线曲线分别表示垂直方向和水平方向振动时的“疲劳-工效降低界限”。曲线上的任一点代表了“疲劳-工效降低”的一个时间限值,如4h曲线上的一点,表示对应于该振动频率时的振动加速度均方根值若等于或稍小于该限位时,将容许人体暴露在此振动下4小时而不会出现疲劳和工效降低。由图6—3可以看出,图6-3疲劳-工效降低界限(1)(ISO)“疲劳-工效降低界限”的振动加速度允许值的大小与振动频率、振动作用方向和暴露时间这三个因素有关,下面分别加以讨论。①振动频率。从图6-3可以看出人体承受全身振动时,有一个最敏感的频率范围。对于垂直振动,最敏感的频率范围为4~8Hz,而对于水平振动,最敏感的频率范围为1~2Hz。②振动作用方向。从图6-3可以看出,垂直振动与水平振动的“疲劳一工效降低界限”是不一样的。在同一暴露时间下,频率在3.15Hz以下时易感受到水平振动,高于此频率时,对垂直振动更敏感,达到8Hz以上的频率范围时,垂直振动允许值只是水平振动允许值的1/2.8。比较各自最敏感频率范围内同一暴露时间的振动允许值,垂直方向却是水平方向的1.4倍。③暴露时间。人体达到一定反应的界限,如“疲劳”、“不舒适”等,都是由人体感觉到的振动强度大小和暴露时间长短二者综合的结果。它们之间的关系可由图6—3看出,在一定频率下,随暴露时间加长,“疲劳一工效降低界限”曲线向下平移,即振动加速度允许值减小。3.平顺性评价方法(1)1/3倍频带分别评价法用这个方法评价时,首先将传至人体的振动加速度进行频谱分析,得到功率谱密度fG,再按式(6—5)求出各1/3倍频带内传至人体的振动加速度均方根值分量pis&&:12()uilifpipfGfdfs轾=犏臌ò&&&&(6-6)式中uif和lif分别是各1/3倍频带的上、下限截止频率,其确定方法参见本章第二节有关内容。1/3倍频带分别评价法认为,同时有许多个1/3倍频带都有振动能量作用于人体时,各频带振动的作用无明显联系,对人体产生影响的,主要是由人体感觉的振动强度最大的一个1/3倍频带所造成。具体评价方法是直接将某一振动方向上的各加速度均方值标在“疲劳一工效降低界限”的图上,找出某个ip确定的最短的暴露时间TFD,也可以用查表方法确定丁TFD。用这种方法评价时,要改善汽车平顺性就得减小某个感觉特别的ip值,希望振动能量按频率分布不要过于集中,尤其在人体敏感的频带内不要有突出的尖峰。(2)总加速度加权均方根值评价法这种方法是用频率加权因子,将人体敏感的频率范围以外的各频带振动加速度均方根值ip折算为等效于人体敏感频率范围内的振动加速度均方根值pwis&&后,再求出总加速度加权均方根值wp。即112222(())pwpwipiciiiwfsss轾轾==?犏犏犏犏臌臌邋&&&&&&(6-7)式中cif——第i个1/3倍频率带的中心频率,Hz。垂直方向)(ciNfW=0.5141488/8cicicicicifffffì#ïï#íï£ïî水平方向)(ciNfW=1122/2cicicifffì#ïí£ïîw(cif)——频率加权函数,并且:在1~80Hz范围内,共有20个1/3频带,所以i=1,2,~,20。ISO2631/1给出wp与允许的“疲劳-工效降低界限”暴露时间TFD之间的对应关系,可直接用作平顺性评价。请参见文献[1]。若要同时考虑三个方向的振动对人体的影响,常采用将三个方向的总加速度加权均方根值进一步加权的方法,求得联合加速度加权均方根值w。21222)4.1()4.1(wywxwzw(6-8)上述两种评价方法,1/3倍频带评价是ISO2631标准的基础,它可以根据人对不同频率振动的敏感性较精确地评价振动激励。总加速度加权均方根值评价可以全面地评价振动激励的强度。(3)吸收功率评价“吸收功率”概念认为人体是一弹性体,在输入力为0~314N,人体变形为0~10.16mm时,人体是一线性系统。当人体承受振动时,振动能量被人体吸收并沿全身传递,这一振动能量随时间的变化率称为吸收功率。人体系统吸收的功率越大,所受到的干扰就越大,就会感到愈不舒适。按照功率的概念,吸收功率avP为:TTavdttvtFTP0)()(1lim(6-9)式中)(tF——振动输入点上的作用力)(tv——振动输入点上沿作用力方向的速度式(6-9)是时间域内确定avP的方法。对于频率域avP,按下式计算:avPiiiGK2444.1035(6-10)式中iG——第i个频带的输入加速度自谱值;iK——考虑人体特性的频率函数,不同振动方向有不同值,其确定方法请参阅GB4970—85《汽车平顺性随机输入行驶试验方法》人体受到机械振动的总干扰是所有方位上各个频率吸收功率的总和。吸收功率评价方法有明显的物理意义,且各方位的振动具有可累加性,并可用一个数值评价受振动强度。但是,目前尚未提出允许的吸收功率忍受界限值。另外,人对振动的反应并不简单取决于机械的动力作用,还包括复杂的生理和心理影响。所以,吸收功率目前主要作为一项辅助性评价指标,用它可作同类型车辆之间的比较。二、汽车振动1.汽车振动系统的简化汽车是一个复杂的振动系统,应根据究所分析的问题进行简化。图6—4是一个将汽车车身质量车的悬挂质量为m2,它由车身、车架及其上的总成所构成。该质量绕通过质心的横轴y的转动惯量为Iy,悬挂质量通过减振器和悬架弹簧与车轴、车轮相连接。车轮、车轴构成的非悬挂质量为m1。车轮再经过具有一定弹性和阻尼的轮胎支承在不平的路面上。这一立体模型,车身质量在讨论平顺性时主要考虑垂直、俯仰、侧倾3个自由度,4个车轮质量有4个垂直自由度,共7个自由度。当汽车对称于其纵轴线.且左、右车辙不平度近似相等时,

1 / 31
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功