2012年中考数学专题练习十二次函数

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1★二次函数知识点汇总★1.定义:一般地,如果cbacbxaxy,,(2是常数,)0a,那么y叫做x的二次函数.2.二次函数2axy的性质(1)抛物线2axy)(0a的顶点是坐标原点,对称轴是y轴.(2)函数2axy的图像与a的符号关系.①当0a时抛物线开口向上顶点为其最低点;②当0a时抛物线开口向下顶点为其最高点3.二次函数cbxaxy2的图像是对称轴平行于(包括重合)y轴的抛物线.4.二次函数cbxaxy2用配方法可化成:khxay2的形式,其中abackabh4422,.5.二次函数由特殊到一般,可分为以下几种形式:①2axy;②kaxy2;③2hxay;④khxay2;⑤cbxaxy2.6.抛物线的三要素:开口方向、对称轴、顶点.①a决定抛物线的开口方向:当0a时,开口向上;当0a时,开口向下;a相等,抛物线的开口大小、形状相同.②平行于y轴(或重合)的直线记作hx.特别地,y轴记作直线0x.7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.8.求抛物线的顶点、对称轴的方法(1)公式法:abacabxacbxaxy442222,∴顶点是),(abacab4422,对称轴是直线abx2.(2)配方法:运用配方法将抛物线的解析式化为khxay2的形式,得到顶点为(h,k),对称轴是hx.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.★用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失★9.抛物线cbxaxy2中,cba,,的作用(1)a决定开口方向及开口大小,这与2axy中的a完全一样.2(2)b和a共同决定抛物线对称轴的位置.由于抛物线cbxaxy2的对称轴是直线abx2,故:①0b时,对称轴为y轴;②0ab(即a、b同号)时,对称轴在y轴左侧;③0ab(即a、b异号)时,对称轴在y轴右侧.(3)c的大小决定抛物线cbxaxy2与y轴交点的位置.当0x时,cy,∴抛物线cbxaxy2与y轴有且只有一个交点(0,c):①0c,抛物线经过原点;②0c,与y轴交于正半轴;③0c,与y轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y轴右侧,则0ab.10.几种特殊的二次函数的图像特征如下:函数解析式开口方向对称轴顶点坐标2axy当0a时开口向上当0a时开口向下0x(y轴)(0,0)kaxy20x(y轴)(0,k)2hxayhx(h,0)khxay2hx(h,k)cbxaxy2abx2(abacab4422,)11.用待定系数法求二次函数的解析式(1)一般式:cbxaxy2.已知图像上三点或三对x、y的值,通常选择一般式.(2)顶点式:khxay2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x轴的交点坐标1x、2x,通常选用交点式:21xxxxay.12.直线与抛物线的交点(1)y轴与抛物线cbxaxy2得交点为(c,0)(2)与y轴平行的直线hx与抛物线cbxaxy2有且只有一个交点(h,cbhah2).(3)抛物线与x轴的交点二次函数cbxaxy2的图像与x轴的两个交点的横坐标1x、2x,是对应一元二次方程02cbxax的两个实数根.抛物线与x轴的交点情况可以由对应的一元二次方程的根的判别式判定:3①有两个交点0抛物线与x轴相交;②有一个交点(顶点在x轴上)0抛物线与x轴相切;③没有交点0抛物线与x轴相离.(4)平行于x轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k,则横坐标是kcbxax2的两个实数根.(5)一次函数0knkxy的图像l与二次函数02acbxaxy的图像G的交点,由方程组cbxaxynkxy2的解的数目来确定:①方程组有两组不同的解时l与G有两个交点;②方程组只有一组解时l与G只有一个交点;③方程组无解时l与G没有交点.(6)抛物线与x轴两交点之间的距离:若抛物线cbxaxy2与x轴两交点为0021,,,xBxA,由于1x、2x是方程02cbxax的两个根,故acxxabxx2121,aaacbacabxxxxxxxxAB44422212212212113.二次函数与一元二次方程的关系:(1)一元二次方程cbxaxy2就是二次函数cbxaxy2当函数y的值为0时的情况.(2)二次函数cbxaxy2的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点;当二次函数cbxaxy2的图象与x轴有交点时,交点的横坐标就是当0y时自变量x的值,即一元二次方程02cbxax的根.(3)当二次函数cbxaxy2的图象与x轴有两个交点时,则一元二次方程cbxaxy2有两个不相等的实数根;当二次函数cbxaxy2的图象与x轴有一个交点时,则一元二次方程02cbxax有两个相等的实数根;当二次函数cbxaxy2的图象与x轴没有交点时,则一元二次方程02cbxax没有实数根14.二次函数的应用:4(1)二次函数常用来解决最优化问题,这类问题实际上就是求函数的最大(小)值;(2)二次函数的应用包括以下方面:分析和表示不同背景下实际问题中变量之间的二次函数关系;运用二次函数的知识解决实际问题中的最大(小)值.15.解决实际问题时的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等.专题十二次函数(时间:90分钟满分:100分)一、选择题(每小题3分,共24分)1.(2011年北京)抛物线y=x2-6x+5的顶点坐标为()A.(3,-4)B.(3,4)C.(-3,-4)D.(-3,4)2.(2011年株洲)某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是()A.4米B.3米C.2米D.1米3.(2011年呼和浩特)已知一元二次方程x2+bx-3=0的一根为-3,在二次函数y=x2+bx-3的图象上有三点(-45,y1)、(-54,y2)、(-16,y3),y1、y2、y3的大小关系是()A.y1y2y3B.y2y1y3C.y3y1y2D.y1y3y24.(2011年重庆)已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是()A.a0B.b0C.c0D.a+b+c05.(2011年宿迁)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.a0B.当x1时,y随x的增大而增大C.c0D.3是方程ax2+bx+c=0的一个根6.(2011年威海)二次函数y=x2-2x-3的图象如图所示,当y0时,自变量x的取值范围是()A.-1x3B.x-1C.x3D.x-3或x3[来源:学科网ZXXK]7.(2011年铜仁)已知函数y=(k-3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k4B.k≤4C.k4且k≠3D.k≤4且k≠38.(2011年桂林)在平面直角坐标系中,将抛物线y=x2+2x+3绕着它与y轴的交点旋转180°,所得抛物线的解析式是()A.y=-(x+1)2+2B.y=-(x-1)2+4C.y=-(x-1)2+2D.y=-(x+1)2+4二、填空题(每小题3分,共18分)59.(2011年德州)将抛物线y=x2的图象向上平移1个单位,则平移后的抛物线的解析式为______.10.(2011年河南)点A(2,y1)、B(3,y2)是二次函数y=x2-2x+1的图象上两点,则y1与y2的大小关系为y1_______y2(填“”“”或“=”).11.(2011年枣庄)抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:从上表可知,下列说法中正确的是______.(填写序号)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是x=12;④在对称轴左侧,y随x的增大而增大.12.(2011年湖州)如图,已知抛物线y=x2+bx+c经过点(0,-3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间,你所确定的b的值是______.13.(2011年宜宾)如图,边长为2的正方形ABCD的中心在直角坐标系的原点O,AD∥x轴,以O为顶点且过A、D两点的抛物线与以O为顶点且过B、C两点的抛物线将正方形分割成几部分,则图中阴影部分的面积是_______.14.(2011年日照)如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b2a;③ax2+bx+c=0的两根分别为-3和1;④a-2b+c0.其中正确的命题是______.(只要求填写正确命题的序号)三、解答题(共58分)15.(10分)(2011年哈尔滨)手工课时,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60cm,菱形的面积S(单位:cm2)随其中一条对角线的长x(单位:cm)的变化而变化.(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)当x是多少时,菱形风筝面积S最大?最大面积是多少?______.(参考公式:当x=-2ba时,二次函数y=ax2+bx+c(a≠0)有最小(大)值244acba)16.(12分)(2011年陕西)二次函数y=23x2-13x的图象经过△AOB的三个顶点,其中A(-1,m),B(n,n).(1)求点A、B的坐标;(2)在坐标平面上找点C,使以A、O、B、C为顶点的四边形是平行四边形.①这样的点C有几个?②能否将抛物线y=23x2-13x平移后经过A、C两点?若能,求出平移后经过A、C两点的一条抛物线的解析式;若不能,说明理由.617.(12分)(2011年北京市)在平面直角坐标系xOy中,二次函数y=mx2+(m-3)x-3(m0)的图象与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.(1)求点A的坐标;(2)当∠ABC=45°时,求m的值;(3)已知一次函数y=kx+b,点P(n,0)是x轴上的一个动点.在(2)的条件下,过点P垂直于x轴的直线交这个一次函数的图象于点M,交二次函数y=mx2+(m-3)x-3(m0)的图象于点N.若只有当-2n2时,点M位于点N的上方,求这个一次函数的解析式.18.(12分)(2011年宜宾)已知抛物线的顶点是C(0,a)(a0,a为常数),并经过点(2a,2a),点D(0,2a)为一定点.(1)求含有常数a的抛物线的解析式;(2)设点P是抛物线上任意一点,过P作PH⊥x轴,垂足是H,求证:PD=PH;(3)设过原点O的直线l与抛物线在第一象限相交于A、B两点.若DA=2DB,且S△ABD=42,求a的值.719.(12分)(2011年杭州)设函数y=kx2+(2k+1)x+1(k为实数).(1)写出其中的两个特殊函数,使它们的图象不全是抛物线,并在同一直角坐标系中用描点法画出这两个特殊函数的图象;(2)根

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功