2012年全国各地中考数学试题分类解析汇编10__平面直角坐标系与坐标

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2012年全国部分地区中考数学试题分类解析汇编第10章平面直角坐标系与坐标一、选择题1.(2012菏泽)点P(﹣2,1)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标。解答:解:点P(﹣2,1)在第二象限.故选B.2.(2012成都)如图,在平面直角坐标系xOy中,点P(3,5)关于y轴的对称点的坐标为()A.(3,5)B.(3,5)C.(3.5)D.(5,3)考点:关于x轴、y轴对称的点的坐标。解答:解:点P(﹣3,5)关于y轴的对称点的坐标为(3,5).故选B.3.(2012四川广安)在平面直角坐标系xOy中,如果有点P(﹣2,1)与点Q(2,﹣1),那么:①点P与点Q关于x轴对称;②点P与点Q关于y轴对称;③点P与点Q关于原点对称;④点P与点Q都在y=﹣的图象上,前面的四种描述正确的是()A.①②B.②③C.①④D.③④考点:反比例函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标;关于原点对称的点的坐标。专题:探究型。分析:分别根据关于x轴对称、关于y轴对称、关于原点对称及反比例函数图象上点的坐标特点进行解答.解答:解:∵点P(﹣2,1)与点Q(2,﹣1),∴P、Q两点关于原点对称,故①②错误,③正确;∵(﹣2)×1=2×(﹣1﹣2,∴点P与点Q都在y=﹣的图象上,故④正确.故选D.点评:本题考查的是关于x轴对称、关于y轴对称、关于原点对称及反比例函数图象上点的坐标特点,熟知以上知识是解答此题的关键.4.(2012•济宁)如图,在平面直角坐标系中,点P坐标为(﹣2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.﹣4和﹣3之间B.3和4之间C.﹣5和﹣4之间D.4和5之间考点:勾股定理;估算无理数的大小;坐标与图形性质。专题:探究型。分析:先根据勾股定理求出OP的长,由于OP=OA,故估算出OP的长,再根据点A在x轴的负半轴上即可得出结论.解答:解:∵点P坐标为(﹣2,3),∴OP==,∵点A、P均在以点O为圆心,以OP为半径的圆上,∴OA=OP=,∵9<13<16,∴3<<4.∵点A在x轴的负半轴上,∴点A的横坐标介于﹣4和﹣3之间.故选A.点评:本题考查的是勾股定理及估算无理数的大小,根据题意利用勾股定理求出OP的长是解答此题的关键.5.(2012•聊城)如图,在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=﹣x分别交于A1,A2,A3,A4…,则点A30的坐标是()A.(30,30)B.(﹣8,8)C.(﹣4,4)D.(4,﹣4)考点:一次函数综合题;解直角三角形。专题:计算题;规律型。分析:根据30÷4=7…2,得出A30在直线y=﹣x上,在第二象限,且在第8个圆上,求出OA30=8,通过解直角三角形即可求出答案.解答:解:∵30÷4=7…2,∴A30在直线y=﹣x上,且在第二象限,即射线OA30与x轴的夹角是45°,如图OA=8,∠AOB=45°,∵在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,∴OA30=8,OMNxy-4-44∵A30的横坐标是﹣8sin45°=﹣4,纵坐标是4,即A30的坐标是(﹣4,4).故选C.点评:本题考查了解直角三角形,一次函数等知识点的应用,解此题的关键是确定出A30的位置(如在直线y=﹣x上、在第二象限、在第8个圆上),此题是一道比较好的题目,主要培养学生分析问题和解决问题的能力.6.(2012江苏南通)线段MN在直角坐标系中的位置如图所示,线段M1N1与MN关于y轴对称,则点M的对应的点M1的坐标为【D】A.(4,2)B.(-4,2)C.(-4,-2)D.(4,-2)【考点】坐标与图形变化-对称.【分析】根据坐标系写出点M的坐标,再根据关于y轴对称的点的坐标特点:纵坐标相等,横坐标互为相反数,即可得出M′的坐标.【解答】解:根据坐标系可得M点坐标是(-4,-2),故点M的对应点M′的坐标为(4,-2),故选:D.【点评】此题主要考查了坐标与图形的变化,关键是掌握关于y轴对称点的坐标的变化特点.7.(2012湖北荆门)已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.解析:由题意得,点M关于x轴对称的点的坐标为:(1﹣2m,1﹣m),又∵M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,∴,解得:,在数轴上表示为:.故选A.8.(2012泰安)如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A.(2,2)B.(2,2)C.(2012泰安)D.(3,3)考点:坐标与图形变化-旋转;菱形的性质。解答:解:连接OB,OB′,过点B′作B′E⊥x轴于E,根据题意得:∠BOB′=105°,∵四边形OABC是菱形,∴OA=AB,∠AOB=∠AOC=∠ABC=×120°=60°,∴△OAB是等边三角形,∴OB=OA=2,∴∠AOB′=∠BOB′﹣∠AOB=105°﹣60°=45°,OB′=OB=2,∴OE=B′E=OB′•sin45°=2222,∴点B′的坐标为:(2,2).故选A.二、填空题1.(2012•烟台)平行四边形ABCD中,已知点A(﹣1,0),B(2,0),D(0,1).则点C的坐标为(3,1).考点:平行四边形的性质;坐标与图形性质。专题:计算题。分析:画出图形,根据平行四边形性质求出DC∥AB,DC=AB=3,根据D的纵坐标和CD=3即可求出答案.解答:解:∵平行四边形ABCD中,已知点A(﹣1,0),B(2,0),D(0,1),∴AB=CD=2﹣(﹣1)=3,DC∥AB,∴C的横坐标是3,纵坐标和D的纵坐标相等,是1,∴C的坐标是(3,1),故答案为:(3,1).点评:本题考查了平行四边形的性质和坐标与图形性质的应用,能根据图形进行推理和求值是解此题的关键,本题主要考查学生的观察能力,用了数形结合思想.2.(2012山西)如图,在平面直角坐标系中,矩形OABC的对角线AC平行于x轴,边OA与x轴正半轴的夹角为30°,OC=2,则点B的坐标是.考点:矩形的性质;坐标与图形性质;解直角三角形。解答:解:过点B作DE⊥OE于E,∵矩形OABC的对角线AC平行于x轴,边OA与x轴正半轴的夹角为30°,∴∠CAO=30°,∴AC=4,∴OB=AC=4,∴OE=2,∴BE=2,∴则点B的坐标是(2,),故答案为:(2,).3.(2012泰安)如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2012个点的横坐标为.考点:点的坐标。解答:解:根据图形,到横坐标结束时,点的个数等于横坐标的平方,例如:横坐标为1的点结束,共有1个,1=12,横坐标为2的点结束,共有2个,4=22,横坐标为3的点结束,共有9个,9=32,横坐标为4的点结束,共有16个,16=42,…横坐标为n的点结束,共有n2个,∵452=2025,∴第2025个点是(45,0),第2012个点是(45,13),所以,第2012个点的横坐标为45.故答案为:45.4.(2012•扬州)在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是m>2.考点:点的坐标;解一元一次不等式组。专题:计算题。分析:根据第一象限的点的坐标,横坐标为正,纵坐标为正,可得出m的范围.解答:解:由第一象限点的坐标的特点可得:,解得:m>2.故答案为:m>2.点评:此题考查了点的坐标的知识,属于基础题,解答本题的关键是掌握第一象限的点的坐标,横坐标为正,纵坐标为正.5.(2012•德州)如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2012的坐标为(2,1006).考点:等腰直角三角形;点的坐标。专题:规律型。分析:由于2012是4的倍数,故A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,可见,A2012在x轴上方,横坐标为2,再根据纵坐标变化找到规律即可解答.解答:解:∵2012是4的倍数,∴A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,∴A2012在x轴上方,横坐标为2,∵A4、A8、A12的纵坐标分别为2,4,6,∴A12的纵坐标为2012×=1006.故答案为(2,1006).点评:本题考查了等腰直角三角形、点的坐标,主要是根据坐标变化找到规律,再依据规律解答.6.(2012安顺)以方程组的解为坐标的点(x,y)在第一象限.考点:一次函数与二元一次方程(组)。解答:解:,①+②得,2y=3,y=,把y=代入①得,=x+1,解得:x=,因为0,>0,根据各象限内点的坐标特点可知,所以点(x,y)在平面直角坐标系中的第一象限.故答案为:一.三、解答题1.(2012•梅州)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(直接填写答案)(1)点A关于点O中心对称的点的坐标为(﹣3,﹣2);(2)点A1的坐标为(﹣2,3);(3)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为π.考点:作图-旋转变换;弧长的计算;坐标与图形变化-旋转。专题:作图题。分析:(1)根据关于坐标原点成中心对称的点的横坐标与纵坐标都互为相反数解答;(2)根据平面直角坐标系写出即可;(3)先利用勾股定理求出OB的长度,然后根据弧长公式列式进行计算即可得解.解答:解:(1)∵A(3,2),∴点A关于点O中心对称的点的坐标为(﹣3,﹣2);(2)(﹣2,3);(3)根据勾股定理,OB==,所以,弧BB1的长==π.故答案为:(1)(﹣3,﹣2);(2)(﹣2,3);(3)π.点评:本题考查了利用旋转变换作图,弧长的计算,熟练掌握网格结构,准确找出对应点的位置是解题的关键.

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功