1.(2012•福建理科)已知双曲线的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于(A)A.B.C.3D.5解:抛物线y2=12x的焦点坐标为(3,0)∵双曲线的右焦点与抛物线y2=12x的焦点重合∴4+b2=9∴b2=5∴双曲线的一条渐近线方程为,即∴双曲线的焦点到其渐近线的距离等于,故选A.2.(2012•福建理科)如图,椭圆E:的左焦点为F1,右焦点为F2,离心率e=.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.(Ⅰ)求椭圆E的方程.(Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相较于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.解:(Ⅰ)∵过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.∴4a=8,∴a=2∵e=,∴c=1∴b2=a2﹣c2=3∴椭圆E的方程为.(Ⅱ)由,消元可得(4k2+3)x2+8kmx+4m2﹣12=0∵动直线l:y=kx+m与椭圆E有且只有一个公共点P(x0,y0)∴m≠0,△=0,∴(8km)2﹣4×(4k2+3)×(4m2﹣12)=0∴4k2﹣m2+3=0①此时x0==,y0=,即P(,)由得Q(4,4k+m)取k=0,m=,此时P(0,),Q(4,),以PQ为直径的圆为(x﹣2)2+(y﹣)2=4,交x轴于点M1(1,0)或M2(3,0)取k=,m=2,此时P(1,),Q(4,0),以PQ为直径的圆为(x﹣)2+(y﹣)2=,交x轴于点M3(1,0)或M4(4,0)故若满足条件的点M存在,只能是M(1,0),证明如下∵∴故以PQ为直径的圆恒过y轴上的定点M(1,0)3.(2012广东理科)在平面直角坐标系xOy中,已知椭圆C:的离心率,且椭圆C上的点到点Q(0,2)的距离的最大值为3.(1)求椭圆C的方程;(2)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.解:(1)由得a2=3b2,椭圆方程为x2+3y2=3b2椭圆上的点到点Q的距离=①当﹣b≤﹣1时,即b≥1,得b=1②当﹣b>﹣1时,即b<1,得b=1(舍)∴b=1∴椭圆方程为(2)假设M(m,n)存在,则有m2+n2>1∵|AB|=,点O到直线l距离∴=∵m2+n2>1∴0<<1,∴当且仅当,即m2+n2=2>1时,S△AOB取最大值,又∵解得:所以点M的坐标为或或或,△AOB的面积为.4.(2012•广东文科)在平面直角坐标系xOy中,已知椭圆C1:(a>b>0)的左焦点为F1(﹣1,0),且点P(0,1)在C1上.(1)求椭圆C1的方程;(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.解.(1)因为椭圆C1的左焦点为F1(﹣1,0),所以c=1,点P(0,1)代入椭圆,得,即b=1,所以a2=b2+c2=2所以椭圆C1的方程为.(2)直线l的斜率显然存在,设直线l的方程为y=kx+m,由,消去y并整理得(1+2k2)x2+4kmx+2m2﹣2=0,因为直线l与椭圆C1相切,所以△=16k2m2﹣4(1+2k2)(2m2﹣2)=0整理得2k2﹣m2+1=0①由,消去y并整理得k2x2+(2km﹣4)x+m2=0因为直线l与抛物线C2相切,所以△=(2km﹣4)2﹣4k2m2=0整理得km=1②综合①②,解得或所以直线l的方程为或.4.(2012•广东文科)在平面直角坐标系xOy中,已知椭圆C1:(a>b>0)的左焦点为F1(﹣1,0),且点P(0,1)在C1上.(1)求椭圆C1的方程;(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程解:(Ⅰ)∵椭圆一个顶点为A(2,0),离心率为,∴∴b=∴椭圆C的方程为;(Ⅱ)直线y=k(x﹣1)与椭圆C联立,消元可得(1+2k2)x2﹣4k2x+2k2﹣4=0设M(x1,y1),N(x2,y2),则x1+x2=,∴|MN|==∵A(2,0)到直线y=k(x﹣1)的距离为∴△AMN的面积S=∵△AMN的面积为,∴∴k=±1.6.(2012•湖北理科)如图,双曲线﹣=1(a,b>0)的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A,B,C,D.则:(Ⅰ)双曲线的离心率e=_________;(Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值=_________.解:(Ⅰ)直线B2F1的方程为bx﹣cy+bc=0,所以O到直线的距离为=∵以A1A2为直径的圆内切于菱形F1B1F2B2,∴∴bc=a2∴(c2﹣a2)c2=a4∴c4﹣a2c2﹣a4=0∴e4﹣e2﹣1=0∴(Ⅱ)菱形F1B1F2B2的面积S1=2bc设矩形ABCD,BC=2m,BA=2n,∴∵m2+n2=a2,∴,∴面积S2=4mn=∴==∵bc=a2=c2﹣b2∴∴=故答案为:,7.(2012•湖北理科)设A是单位圆x2+y2=1上的任意一点,i是过点A与x轴垂直的直线,D是直线i与x轴的交点,点M在直线l上,且满足丨DM丨=m丨DA丨(m>0,且m≠1).当点A在圆上运动时,记点M的轨迹为曲线C.(I)求曲线C的方程,判断曲线C为何种圆锥曲线,并求焦点坐标;(Ⅱ)过原点且斜率为k的直线交曲线C于P、Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,请说明理由.解:(I)如图1,设M(x,y),A(x0,y0)∵丨DM丨=m丨DA丨,∴x=x0,|y|=m|y0|∴x0=x,|y0|=|y|①∵点A在圆上运动,∴②①代入②即得所求曲线C的方程为∵m∈(0,1)∪(1,+∞),∴0<m<1时,曲线C是焦点在x轴上的椭圆,两焦点坐标分别为(),m>1时,曲线C是焦点在y轴上的椭圆,两焦点坐标分别为(),(Ⅱ)如图2、3,∀x1∈(0,1),设P(x1,y1),H(x2,y2),则Q(x2,y2),N(0,y1),∵P,H两点在椭圆C上,∴①﹣②可得③∵Q,N,H三点共线,∴kQN=kQH,∴∴kPQ•kPH=∵PQ⊥PH,∴kPQ•kPH=﹣1∴∵m>0,∴故存在,使得在其对应的椭圆上,对任意k>0,都有PQ⊥PH9.(2012•江西文科)椭圆(a>b>0)的左、右顶点分别是A,B,左、右焦点分别是F1,F2.若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为()A.B.C.D.解:设该椭圆的半焦距为c,由题意可得,|AF1|=a﹣c,|F1F2|=2c,|F1B|=a+c,∵|AF1|,|F1F2|,|F1B|成等比数列,∴(2c)2=(a﹣c)(a+c),∴=,即e2=,∴e=,即此椭圆的离心率为.故选B.10.(2012•江西文科)已知三点O(0,0),A(﹣2,1),B(2,1),曲线C上任意一点M(x,y)满足||=(1)求曲线C的方程;(2)点Q(x0,y0)(﹣2<x0<2)是曲线C上动点,曲线C在点Q处的切线为l,点P的坐标是(0,﹣1),l与PA,PB分别交于点D,E,求△QAB与△PDE的面积之比.解:(1)由=(﹣2﹣x,1﹣y),=(2﹣x,1﹣y)可得=(﹣2x,2﹣2y),∴||=,=(x,y)•(0,2)=2y.由题意可得=2y,化简可得x2=4y.(2)直线PA,PB的方程分别为y=﹣x﹣1、y=x﹣1,曲线C在点Q(x0,y0)(﹣2<x0<2)处的切线方程为y=x﹣,且与y轴的交点F(0,﹣).由求得xD=,由求得xE=.故xE﹣xD=2,故|FP|=1﹣.故S△PDE=|PF|•|xE﹣xD|=(1﹣)•2=,而S△QAB=×4×(1﹣)=,∴=2,即△QAB与△PDE的面积之比等于2.11.(2012•辽宁理科)已知P,Q为抛物线x2=2y上两点,点P,Q的横坐标为4,﹣2,过P,Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为_________.解:因为点P,Q的横坐标分别为4,2,代入抛物线方程得P,Q的纵坐标分别为8,2.由x2=2y,则y=,所以y′=x,过点P,Q的抛物线的切线的斜率分别为4,2,所以过点P,Q的抛物线的切线方程分别为y=4x﹣8,y=﹣2x﹣2联立方程组解得x=1,y=﹣4故点A的纵坐标为﹣4.故答案为:﹣4.12.(2012•辽宁理科)如图,已知椭圆C0:,动圆C1:.点A1,A2分别为C0的左右顶点,C1与C0相交于A,B,C,D四点.(I)求直线AA1与直线A2B交点M的轨迹方程;(II)设动圆C2:与C0相交于A',B',C',D'四点,其中b<t2<a,t1≠t2.若矩形ABCD与矩形A'B'C'D'的面积相等,证明:为定值.解:(I)设A(x1,y1),B(x2,y2),∵A1(﹣a,0),A2(a,0),则直线A1A的方程为①直线A2B的方程为②由①×②可得:③∵A(x1,y1)在椭圆C0上,∴∴代入③可得:∴;(II)证明:设A′(x3,y3),∵矩形ABCD与矩形A'B'C'D'的面积相等∴4|x1||y1|=4|x3||y3|∴=∵A,A′均在椭圆上,∴=∴=∴∵t1≠t2,∴x1≠x2.∴∵,∴∴=a2+b2为定值.13.(2012•山东文科)已知双曲线C1:的离心率为2.若抛物线的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为()A.B.x2=yC.x2=8yD.x2=16y解:双曲线C1:的离心率为2.所以,即:=4,所以;双曲线的渐近线方程为:抛物线的焦点(0,)到双曲线C1的渐近线的距离为2,所以2=,因为,所以p=8.抛物线C2的方程为x2=16y.故选D.14.(2012•山东文科)如图,椭圆的离心率为,直线x=±a和y=±b所围成的矩形ABCD的面积为8.(Ⅰ)求椭圆M的标准方程;(Ⅱ)设直线l:y=x+m(m∈R)与椭圆M有两个不同的交点P,Q,l与矩形ABCD有两个不同的交点S,T.求的最大值及取得最大值时m的值.解:(I)…①矩形ABCD面积为8,即2a•2b=8…②由①②解得:a=2,b=1,∴椭圆M的标准方程是.(II),由△=64m2﹣20(4m2﹣4)>0得.设P(x1,y1),Q(x2,y2),则,.当l过A点时,m=1,当l过C点时,m=﹣1.①当时,有,,其中t=m+3,由此知当,即时,取得最大值.②由对称性,可知若,则当时,取得最大值.③当﹣1≤m≤1时,,,由此知,当m=0时,取得最大值.综上可知,当或m=0时,取得最大值.15.(2012•天津文科)已知双曲线C1:与双曲线C:(a>0,b>0)有相同的渐近线,且C1的右焦点为F(,0).则a=_________,b=_________.解:∵双曲线C:(a>0,b>0)的渐近线方程为y=±2x,∴=2∵且C1的右焦点为F(,0).∴c=,由a2+b2=c2解得a=1,b=2故答案为1,216.(2012•天津)已知椭圆,点P()在椭圆上.(1)求椭圆的离心率;(2)设A为椭圆的左顶点,O为坐标原点.若点Q在椭圆上且满足|AQ|=|AO|,求直线OQ的斜率的值.解:(1)因为点P()在椭圆上,所以∴∴∴(2)设直线OQ的斜率为,则其方程为y=kx设点Q的坐标为(x0,y0),由条件得,消元并整理可得①∵|AQ|=|AO|,A(﹣a,0),y0=kx0,∴∴∵x0≠0,∴代入①,整理得∵∴∴5k4﹣22k2﹣15=0∴k2=5∴17.(2012新课标理科)设F1、F2是椭圆的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.解:∵△F2PF1是底角为30°的等腰三角形∴|PF2|=|F2F1|∵P为直线x=上一点∴