2013年高考数学全国卷1答案与解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

12013年理科数学全国卷Ⅰ答案与解析一、选择题共12小题。每小题5分,共60分。在每个小题给出的四个选项中,只有一项是符合题目要求的一项。1.已知集合2|20,|55AxxxBxx,则()A.A∩B=B.A∪B=RC.B⊆AD.A⊆B考点:集合的运算解析:A=(-,0)∪(2,+),∴A∪B=R.答案:B2.若复数z满足(34)|43|izi,则z的虚部为()A.4B.45C.4D.45考点:复数的运算解析:由题知===,故z的虚部为.答案:D3.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学.初中.高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样考点:抽样的方法解析:因该地区小学.初中.高中三个学段学生的视力情况有较大差异,故最合理的抽样方法是按学段分层抽样.答案:C4.已知双曲线:()的离心率为,则的渐近线方程为A.B.C.12yxD.考点:双曲线的性质2解析:由题知,,即==,∴=,∴=,∴的渐近线方程为.答案:C5.运行如下程序框图,如果输入的,则输出s属于A.[3,4]B.[5,2]C.[4,3]D.[2,5]考点:程序框图解析:有题意知,当时,,当时,,∴输出s属于[-3,4].答案:A6.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为()A.35003cmB.38663cmC.313723cmD.320483cm考点:球的体积的求法解析:设球的半径为R,则由题知球被正方体上面截得圆的半径为4,球心到截面圆的距离为R-2,则,解得R=5,∴球的体积为35003cm.答案:A7.设等差数列na的前n项和为11,2,0,3nmmmSSSS,则m()A.3B.4C.5D.6考点:等差数列3解析:有题意知==0,∴=-=-(-)=-2,=-=3,∴公差=-=1,∴3==-,∴=5.答案:C8.某几何体的三视图如图所示,则该几何体的体积为A.168B.88C.1616D.816考点:三视图解析:由三视图知,该几何体为放到的半个圆柱底面半径为2高为4,上边放一个长为4宽为2高为2长方体,故其体积为=.答案:A9.设m为正整数,展开式的二项式系数的最大值为,展开式的二项式系数的最大值为,若137ab,则m()A.5B.6C.7D.8考点:二项式的展开式解析:由题知=,=,∴13=7,即=,解得=6.答案:B10.已知椭圆2222:1(0)xyEabab的右焦点为(3,0)F,过点F的直线交椭圆于,AB两点。若AB的中点坐标为(1,1),则E的方程为()A.2214536xyB.2213627xyC.2212718xyD.221189xy4考点:椭圆的概念与性质解析:设,则=2,=-2,①②①-②得,∴===,又==,∴=,又9==,解得=9,=18,∴椭圆方程为.答案:D11.已知函数()fx,若||≥,则的取值范围是A.B.C.[2,1]D.[2,0]考点:解不等式组,对数函数解析:∵||=,∴由||≥得,且,由可得,则≥-2,排除A,B,当=1时,易证对恒成立,故=1不适合,排除C.答案:D12.设nnnABC的三边长分别为,,nnnabc,nnnABC的面积为nS,1,2,3,n,若11111,2bcbca,111,,22nnnnnnnncabaaabc,则()A.{Sn}为递减数列B.{Sn}为递增数列C.{S2n-1}为递增数列,{S2n}为递减数列D.{S2n-1}为递减数列,{S2n}为递增数列考点:nS的求法解析:略答案:B5二.填空题:本大题共四小题,每小题5分。13.已知两个单位向量a,b的夹角为60°,c=ta+(1-t)b,若b·c=0,则t=_____.考点:向量的数量积解析:=====0,解得=.答案:=14.若数列{}的前n项和为Sn=,则数列{}的通项公式是=______.考点:等比数列解析:当=1时,==,解得=1,当≥2时,==-()=,即=,∴{}是首项为1,公比为-2的等比数列,∴=.答案:=15.设当x时,函数()sin2cosfxxx取得最大值,则cos______考点:求三角函数的最值解析:∵==令=,,则==,当=,即=时,取最大值,此时=,∴===.答案:===16.若函数=的图像关于直线2x对称,则的最大值是______.考点:图像的性质6解析:由图像关于直线=-2对称,则0==,0==,解得=8,=15,∴=,∴===当∈(-∞,)∪(-2,)时,>0,当∈(,-2)∪(,+∞)时,<0,∴在(-∞,)单调递增,在(,-2)单调递减,在(-2,)单调递增,在(,+∞)单调递减,故当=和=时取极大值,==16.答案:16三.解答题:解答应写出文字说明,证明过程或演算步骤。17.(本小题满分12分)如图,在△ABC中,∠ABC=90°,AB=3,BC=1,P为△ABC内一点,∠BPC=90°(1)若PB=12,求PA;(2)若∠APB=150°,求tan∠PBA考点:余弦定理,正弦定理解析:(Ⅰ)由已知得,∠PBC=,∴∠PBA=30o,在△PBA中,由余弦定理得==,∴PA=;,(Ⅱ)设∠PBA=,由已知得,PB=,在△PBA中,由正弦定理得,,7化简得,,∴=,∴=.18.(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值。考点:线与线垂直证明,线与面所成角的求法解析:(Ⅰ)取AB中点E,连结CE,,,∵AB=,=,∴是正三角形,∴⊥AB,∵CA=CB,∴CE⊥AB,∵=E,∴AB⊥面,∴AB⊥;(Ⅱ)由(Ⅰ)知EC⊥AB,⊥AB,又∵面ABC⊥面,面ABC∩面=AB,∴EC⊥面,∴EC⊥,∴EA,EC,两两相互垂直,以E为坐标原点,的方向为轴正方向,||为单位长度,建立如图所示空间直角坐标系,有题设知A(1,0,0),(0,,0),C(0,0,),B(-1,0,0),则=(1,0,),==(-1,0,),=(0,-,),……9分设=是平面的法向量,则,即,可取=(,1,-1),8∴=,∴直线A1C与平面BB1C1C所成角的正弦值为.19.(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n。如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验。假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立(1)求这批产品通过检验的概率;(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望。考点:求事件发生的概率、期望解析:设第一次取出的4件产品中恰有3件优质品为事件A,第一次取出的4件产品中全为优质品为事件B,第二次取出的4件产品都是优质品为事件C,第二次取出的1件产品是优质品为事件D,这批产品通过检验为事件E,根据题意有E=(AB)∪(CD),且AB与CD互斥,∴P(E)=P(AB)+P(CD)=P(A)P(B|A)+P(C)P(D|C)=+=.(Ⅱ)X的可能取值为400,500,800,并且P(X=400)=1-=,P(X=500)=,P(X=800)==,∴X的分布列为X400500800PEX=400×+500×+800×=506.2520.(本小题满分12分)已知圆:,圆:,动圆与外切并且与圆内切,圆心的轨迹为曲线C.9(Ⅰ)求C的方程;(Ⅱ)是与圆,圆都相切的一条直线,与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.考点:椭圆的概念,直线与椭圆位置关系解析:由已知得圆的圆心为(-1,0),半径=1,圆的圆心为(1,0),半径=3.设动圆的圆心为(,),半径为R.(Ⅰ)∵圆与圆外切且与圆内切,∴|PM|+|PN|===4,由椭圆的定义可知,曲线C是以M,N为左右焦点,场半轴长为2,短半轴长为的椭圆(左顶点除外),其方程为.(Ⅱ)对于曲线C上任意一点(,),由于|PM|-|PN|=≤2,∴R≤2,当且仅当圆P的圆心为(2,0)时,R=2.∴当圆P的半径最长时,其方程为,当的倾斜角为时,则与轴重合,可得|AB|=.当的倾斜角不为时,由≠R知不平行轴,设与轴的交点为Q,则=,可求得Q(-4,0),∴设:,由于圆M相切得,解得.当=时,将代入并整理得,解得=,∴|AB|==.当=-时,由图形的对称性可知|AB|=,综上,|AB|=或|AB|=.21.(本小题满分共12分)已知函数=,=,若曲线和曲线都过点P(0,2),且在点P处有相同的切线(Ⅰ)求,,,的值;(Ⅱ)若≥-2时,≤,求的取值范围。考点:求函数的导数、解不等式10解析:(Ⅰ)由已知得,而=,=,∴=4,=2,=2,=2;……4分(Ⅱ)由(Ⅰ)知,,,设函数==(),==,有题设可得≥0,即,令=0得,=,=-2,(1)若,则-2<≤0,∴当时,<0,当时,>0,即在单调递减,在单调递增,故在=取最小值,而==≥0,∴当≥-2时,≥0,即≤恒成立,(2)若,则=,∴当≥-2时,≥0,∴在(-2,+∞)单调递增,而=0,∴当≥-2时,≥0,即≤恒成立,(3)若,则==<0,∴当≥-2时,≤不可能恒成立,综上所述,的取值范围为[1,].22.(本小题满分10分)选修4—1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D。(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=√3,延长CE交AB于点F,求△BCF外接圆的半径。考点:弦切定理,三角形的性质,三角形与外接圆的关系等解析:(Ⅰ)连结DE,交BC与点G.由弦切角定理得,∠ABF=∠BCE,∵∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE,又∵DB⊥BE,∴DE是直径,∠DCE=,由勾股定理可得DB=DC.11(Ⅱ)由(Ⅰ)知,∠CDE=∠BDE,BD=DC,故DG是BC的中垂线,∴BG=.设DE中点为O,连结BO,则∠BOG=,∠ABE=∠BCE=∠CBE=,∴CF⊥BF,∴Rt△BCF的外接圆半径等于.23.(本小题10分)选修4—4:坐标系与参数方程已知曲线C1的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为。(Ⅰ)把C1的参数方程化为极坐标方程;(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)。考点:参数方程与极坐标方程的转化,直角坐标与极坐标的转化解析:将消去参数,化为普通方程,即:,将代入得,,∴的极坐标方程为;(Ⅱ)的普通方程为,由解得或,∴与的交点的极坐标分别为(),.24.(本小题满分10分)选修4—5:不等式选讲已知函数=,=.(Ⅰ)当=2时,求不等式<的解集;(Ⅱ)设>-1,且当∈[,)时,≤,求的取值范围.考点:含有绝对值不等式的解法解析:当=-2时,不等式<化为,12设函数=,=,其图像如图所示从图像可知,当且仅当时,<0,∴原不等式解集是.(Ⅱ)当∈[,)时,=,不等式≤化为,∴对∈[,)都成立,故,即≤,∴的取值范围为(-1,].

1 / 12
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功