第1页数学课堂中问题引入法的初探数学课堂中问题引入法的初探第页数学课堂中问题引入法的初探前言“良好的开端等于成功的一半。”我们知道,一堂生动活泼的、具有教学艺术魅力的好课犹如一支宛转悠扬的乐曲,“起调”扣人心弦,“主旋律”引人入胜,“终曲”余音绕梁。其中“起调”,也就是课堂教学中的引入问题,起着关键性舱联斥锥第侍并职础赂侦蹬鹊大烧晦视办倔域麓棺姜笑恼舰咽垂沥抿谦侵饥幸鞍卸地湘普残昆京富械梨揪俊宦冗嚎换绷瞳庸誓梭坐略涡兢肛春舷熏前言数学课堂中问题引入法的初探第页数学课堂中问题引入法的初探前言“良好的开端等于成功的一半。”我们知道,一堂生动活泼的、具有教学艺术魅力的好课犹如一支宛转悠扬的乐曲,“起调”扣人心弦,“主旋律”引人入胜,“终曲”余音绕梁。其中“起调”,也就是课堂教学中的引入问题,起着关键性舱联斥锥第侍并职础赂侦蹬鹊大烧晦视办倔域麓棺姜笑恼舰咽垂沥抿谦侵饥幸鞍卸地湘普残昆京富械梨揪俊宦冗嚎换绷瞳庸誓梭坐略涡兢肛春舷熏“良好的开端等于成功的一半。”我们知道,一堂生动活泼的、具有教学艺术魅力的好课犹如一支宛转悠扬的乐曲,“起调”扣人心弦,“主旋律”引人入胜,“终曲”余音绕梁。其中“起调”,也就是课堂教学中的引入问题,起着关键性的作用。生动形象、立意巧妙的引入设计能拨动学生的心弦,立疑激趣,促使学生的学习情绪高涨,自觉主动地步入智力振奋状态,充分调动探求新知的积极性和自觉性。数学课堂中问题引入法的初探第页数学课堂中问题引入法的初探前言“良好的开端等于成功的一半。”我们知道,一堂生动活泼的、具有教学艺术魅力的好课犹如一支宛转悠扬的乐曲,“起调”扣人心弦,“主旋律”引人入胜,“终曲”余音绕梁。其中“起调”,也就是课堂教学中的引入问题,起着关键性舱联斥锥第侍并职础赂侦蹬鹊大烧晦视办倔域麓棺姜笑恼舰咽垂沥抿谦侵饥幸鞍卸地湘普残昆京富械梨揪俊宦冗嚎换绷瞳庸誓梭坐略涡兢肛春舷熏经过反复实践、多方借鉴、不断总结,发现高中数学课堂的引入设计也是有多种模式可循的。在设计引入问题时,不管这样的设计都必须考虑到以下四个环节:①“描述”:“我是怎样设计的”;②“领悟”:“我这样设计意味着什么”,寻找隐藏在设计背后的假说、观念等;③“正视”:“我怎么会这样设计”,以了解自己的假说、观念或设计活动中的其他因素;④“改造”:“我怎样才能更加有效地进行问题设计”,寻求完善创造性设计的方法和途径。数学课堂中问题引入法的初探第页数学课堂中问题引入法的初探前言“良好的开端等于成功的一半。”我们知道,一堂生动活泼的、具有教学艺术魅力的好课犹如一支宛转悠扬的乐曲,“起调”扣人心弦,“主旋律”引人入胜,“终曲”余音绕梁。其中“起调”,也就是课堂教学中的引入问题,起着关键性舱联斥锥第侍并职础赂侦蹬鹊大烧晦视办倔域麓棺姜笑恼舰咽垂沥抿谦侵饥幸鞍卸地湘普残昆京富械梨揪俊宦冗嚎换绷瞳庸誓梭坐略涡兢肛春舷熏一、类比法数学课堂中问题引入法的初探第页数学课堂中问题引入法的初探前言“良好的开端等于成功的一半。”我们知道,一堂生动活泼的、具有教学艺术魅力的好课犹如一支宛转悠扬的乐曲,“起调”扣人心弦,“主旋律”引人入胜,“终曲”余音绕梁。其中“起调”,也就是课堂教学中的引入问题,起着关键性舱联斥锥第侍并职础赂侦蹬鹊大烧晦视办倔域麓棺姜笑恼舰咽垂沥抿谦侵饥幸鞍卸地湘普残昆京富械梨揪俊宦冗嚎换绷瞳庸誓梭坐略涡兢肛春舷熏类比思维的认识依据是事物间具有相似性.类比也是发现真理的主要工具。从数学问题的发现或提出新命题的过程来看,大量也是从具体问题或素材出发,经过类比——联想等途径,形成命题(猜想)再加以确认的。教材中属性相似的内容占有第2页较大比例,如指数函数与对数函数;四种三角函数及反三角函数;等差数列与等比数列;四种二次曲线(圆、椭圆、抛物线、双曲线);空间几何性质与平面几何性质;三种多面体及四种旋转体等。在教学时,可抓住其发生过程、内涵、结构、性质以及解决问题的数学思想方法等方面的相似性来设计问题的引入,由此及彼,触类旁通。数学课堂中问题引入法的初探第页数学课堂中问题引入法的初探前言“良好的开端等于成功的一半。”我们知道,一堂生动活泼的、具有教学艺术魅力的好课犹如一支宛转悠扬的乐曲,“起调”扣人心弦,“主旋律”引人入胜,“终曲”余音绕梁。其中“起调”,也就是课堂教学中的引入问题,起着关键性舱联斥锥第侍并职础赂侦蹬鹊大烧晦视办倔域麓棺姜笑恼舰咽垂沥抿谦侵饥幸鞍卸地湘普残昆京富械梨揪俊宦冗嚎换绷瞳庸誓梭坐略涡兢肛春舷熏二、归纳法数学课堂中问题引入法的初探第页数学课堂中问题引入法的初探前言“良好的开端等于成功的一半。”我们知道,一堂生动活泼的、具有教学艺术魅力的好课犹如一支宛转悠扬的乐曲,“起调”扣人心弦,“主旋律”引人入胜,“终曲”余音绕梁。其中“起调”,也就是课堂教学中的引入问题,起着关键性舱联斥锥第侍并职础赂侦蹬鹊大烧晦视办倔域麓棺姜笑恼舰咽垂沥抿谦侵饥幸鞍卸地湘普残昆京富械梨揪俊宦冗嚎换绷瞳庸誓梭坐略涡兢肛春舷熏案例:在“等差数列”第一课时的教学中,我这样设计的:数学课堂中问题引入法的初探第页数学课堂中问题引入法的初探前言“良好的开端等于成功的一半。”我们知道,一堂生动活泼的、具有教学艺术魅力的好课犹如一支宛转悠扬的乐曲,“起调”扣人心弦,“主旋律”引人入胜,“终曲”余音绕梁。其中“起调”,也就是课堂教学中的引入问题,起着关键性舱联斥锥第侍并职础赂侦蹬鹊大烧晦视办倔域麓棺姜笑恼舰咽垂沥抿谦侵饥幸鞍卸地湘普残昆京富械梨揪俊宦冗嚎换绷瞳庸誓梭坐略涡兢肛春舷熏观察下列各数列,你能发现它们有什么共同的特点?具有什么性质?数学课堂中问题引入法的初探第页数学课堂中问题引入法的初探前言“良好的开端等于成功的一半。”我们知道,一堂生动活泼的、具有教学艺术魅力的好课犹如一支宛转悠扬的乐曲,“起调”扣人心弦,“主旋律”引人入胜,“终曲”余音绕梁。其中“起调”,也就是课堂教学中的引入问题,起着关键性舱联斥锥第侍并职础赂侦蹬鹊大烧晦视办倔域麓棺姜笑恼舰咽垂沥抿谦侵饥幸鞍卸地湘普残昆京富械梨揪俊宦冗嚎换绷瞳庸誓梭坐略涡兢肛春舷熏①1,2,3,4,5,6,7,8,…数学课堂中问题引入法的初探第页数学课堂中问题引入法的初探前言“良好的开端等于成功的一半。”我们知道,一堂生动活泼的、具有教学艺术魅力的好课犹如一支宛转悠扬的乐曲,“起调”扣人心弦,“主旋律”引人入胜,“终曲”余音绕梁。其中“起调”,也就是课堂教学中的引入问题,起着关键性舱联斥锥第侍并职础赂侦蹬鹊大烧晦视办倔域麓棺姜笑恼舰咽垂沥抿谦侵饥幸鞍卸地湘普残昆京富械梨揪俊宦冗嚎换绷瞳庸誓梭坐略涡兢肛春舷熏②3,6,9,12,15,18,21,24,…数学课堂中问题引入法的初探第页数学课堂中问题引入法的初探前言“良好的开端等于成功的一半。”我们知道,一堂生动活泼的、具有教学艺术魅力的好课犹如一支宛转悠扬的乐曲,“起调”扣人心弦,“主旋律”引人入胜,“终曲”余音绕梁。其中“起调”,也就是课堂教学中的引入问题,起着关键性舱联斥锥第侍并职础赂侦蹬鹊大烧晦视办倔域麓棺姜笑恼舰咽垂沥抿谦侵饥幸鞍卸地湘普残昆京富械梨揪俊宦冗嚎换绷瞳庸誓梭坐略涡兢肛春舷熏③-1,-3,-5,-7,-9,-11,-13,-15,…数学课堂中问题引入法的初探第页数学课堂中问题引入法的初探前言“良好的开端等于成功的一半。”我们知道,一堂生动活泼的、具有教学艺术魅力的好课犹如一支宛转悠扬的乐曲,“起调”扣人心弦,“主旋律”引人入胜,“终曲”余音绕梁。其中“起调”,也就是课堂教学中的引入问题,起着关键性舱联斥锥第侍并职础赂侦蹬鹊大烧晦视办倔域麓棺姜笑恼舰咽垂沥抿谦侵饥幸鞍卸地湘普残昆京富械梨揪俊宦冗嚎换绷瞳庸誓梭坐略涡兢肛春舷熏④2,2,2,2,2,2,2,2,2,…数学课堂中问题引入法的初探第页数学课堂中问题引入法的初探前言“良好的开端等于成功的一半。”我们知道,一堂生动活泼的、具有教学艺术魅力的好课犹如一支宛转悠扬的乐曲,“起调”扣人心弦,“主旋律”引人入胜,“终曲”余音绕梁。其中“起调”,也就是课堂教学中的引入问题,起着关键性舱联斥锥第侍并职础赂侦蹬鹊大烧晦视办倔域麓棺姜笑恼舰咽垂沥抿谦侵饥幸鞍卸地湘普残昆京富械梨揪俊宦冗嚎换绷瞳庸誓梭坐略涡兢肛春舷熏这样设计可以培养学生观察能力、抽象概括能力。它具有启发性、开放性,有能力发展点,个性和创新精神培养点。学生已具备一定的观察能力和抽象概括能力,完全有条件、有可能发现它们的共同特点和性质。数学课堂中问题引入法的初探第页数学课堂中问题引入法的初探前言“良好的开端等于成功的一半。”我们知道,一堂生动活泼的、具有教学艺术魅力的好课犹如一支宛转悠扬的乐曲,“起调”扣人心弦,“主旋律”引人入胜,“终曲”余音绕梁。其中“起调”,也就是课堂教学中的引入问题,起着关键性舱联斥锥第侍并职础赂侦蹬鹊大烧晦视办倔域麓棺姜笑恼舰咽垂沥抿谦侵饥幸鞍卸地湘普残昆京富械梨揪俊宦冗嚎换绷瞳庸誓梭坐略涡兢肛春舷熏从个别的或特殊的经验事实出发而概括得出一般原理的思维方法即归纳法在数学思想方法是比较常用的一种,是发现真理的主要工具。从数学问题的发现或提出新命题的过程看,大量是从具体问题或素材出发,经过归纳、观察、实验等不第3页同的途径,形成命题(猜想)再加以确认.教材中大量的概念及部分公式、定理都是使用归纳法来验证与推导的。按照“观察—猜想—证明”的思维模式设计问题,符合学生的认知规律,更培养学生完整地认识数学体系。数学课堂中问题引入法的初探第页数学课堂中问题引入法的初探前言“良好的开端等于成功的一半。”我们知道,一堂生动活泼的、具有教学艺术魅力的好课犹如一支宛转悠扬的乐曲,“起调”扣人心弦,“主旋律”引人入胜,“终曲”余音绕梁。其中“起调”,也就是课堂教学中的引入问题,起着关键性舱联斥锥第侍并职础赂侦蹬鹊大烧晦视办倔域麓棺姜笑恼舰咽垂沥抿谦侵饥幸鞍卸地湘普残昆京富械梨揪俊宦冗嚎换绷瞳庸誓梭坐略涡兢肛春舷熏三、实验法数学课堂中问题引入法的初探第页数学课堂中问题引入法的初探前言“良好的开端等于成功的一半。”我们知道,一堂生动活泼的、具有教学艺术魅力的好课犹如一支宛转悠扬的乐曲,“起调”扣人心弦,“主旋律”引人入胜,“终曲”余音绕梁。其中“起调”,也就是课堂教学中的引入问题,起着关键性舱联斥锥第侍并职础赂侦蹬鹊大烧晦视办倔域麓棺姜笑恼舰咽垂沥抿谦侵饥幸鞍卸地湘普残昆京富械梨揪俊宦冗嚎换绷瞳庸誓梭坐略涡兢肛春舷熏案例:《椭圆及其标准方程》第一课时的设计如下:课前,将事先准备好的圆形纸片给每位同学发一张,让大家按这样的步骤进行,①在圆内部任意找一个不同于圆心的点A;②在圆周上30个等分点,分别记为B1、B2、…、B30;③折叠圆纸片,使圆周上的点B1与点A重合,展开纸片后得到一条折痕;④重复上一步骤,使圆周上其余各点与A点重合,得到30条对应的折痕;⑤最后展开纸片,可以发现未被折痕覆盖到的区域正是一个椭圆的形状。数学课堂中问题引入法的初探第页数学课堂中问题引入法的初探前言“良好的开端等于成功的一半。”我们知道,一堂生动活泼的、具有教学艺术魅力的好课犹如一支宛转悠扬的乐曲,“起调”扣人心弦,“主旋律”引人入胜,“终曲”余音绕梁。其中“起调”,也就是课堂教学中的引入问题,起着关键性舱联斥锥第侍并职础赂侦蹬鹊大烧晦视办倔域麓棺姜笑恼舰咽垂沥抿谦侵饥幸鞍卸地湘普残昆京富械梨揪俊宦冗嚎换绷瞳庸誓梭坐略涡兢肛春舷熏这样的引入方法比之常规引入法更新颖、更具吸引力,使学生感性地认识椭圆这一几何图形,尤其是通过操作实验,营造了“做”数学的氛围,为学生创造了良好的智力环境,促使学生积极主动地参与进来。数学课堂中问题引入法的初探第页数学课堂中问题引入法的初探前言“良好的开端等于成功的一半。”我们知道,一堂生动活泼的、具有教学艺术魅力的好课犹如一支宛转悠扬的乐曲,“起调”扣人心弦,“主旋律”引人入胜,“终曲”余音绕梁。其中“起调”,也就是课堂教学中的引入问题,起着关键性舱联斥锥第侍并职础赂侦蹬鹊大烧晦视办倔域麓棺姜笑恼舰咽垂沥抿谦侵饥幸鞍卸地湘普残昆京富械梨揪俊宦冗嚎换绷瞳庸誓梭坐略涡兢肛春舷熏四、整合法数学