备课大师网:免费备课第一站!://图形的相似与位似一、选择题1.(2014•湖北宜昌,第9题3分)如图,A,B两地被池塘隔开,小明通过下列方法测出了A、B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为12m,由此他就知道了A、B间的距离.有关他这次探究活动的描述错误的是()A.AB=24mB.MN∥ABC.△CMN∽△CABD.CM:MA=1:2考点:三角形中位线定理;相似三角形的应用.专题:应用题.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得MN∥AB,MN=AB,再根据相似三角形的判定解答.解答:解:∵M、N分别是AC,BC的中点,∴MN∥AB,MN=AB,∴AB=2MN=2×12=24m,△CMN∽△CAB,∵M是AC的中点,∴CM=MA,∴CM:MA=1:1,故描述错误的是D选项.故选D.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,相似三角形的判定,熟记定理并准确识图是解题的关键.2.(2014•莱芜,第10题3分)如图,在△ABC中,D、E分别是AB、BC上的点,且DE∥AC,若S△BDE:S△CDE=1:4,则S△BDE:S△ACD=()A.1:16B.1:18C.1:20D.1:24考点:相似三角形的判定与性质..分析:设△BDE的面积为a,表示出△CDE的面积为4a,根据等高的三角形的面积的比等于底边的比求出,然后求出△DBE和△ABC相似,根据相似三角形面积的比等于相似比的平方求出△ABC的面积,然后表示出△ACD的面积,再求出比值即可.备课大师网:免费备课第一站!://解答:解:∵S△BDE:S△CDE=1:4,∴设△BDE的面积为a,则△CDE的面积为4a,∵△BDE和△CDE的点D到BC的距离相等,∴=,∴=,∵DE∥AC,∴△DBE∽△ABC,∴S△DBE:S△ABC=1:25,∴S△ACD=25a﹣a﹣4a=20a,∴S△BDE:S△ACD=a:20a=1:20.故选C.点评:本题考查了相似三角形的判定与性质,等高的三角形的面积的比等于底边的比,熟记相似三角形面积的比等于相似比的平方用△BDE的面积表示出△ABC的面积是解题的关键.3.(2014•湖北黄冈,第8题3分)已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F.点D为BC上一点,连接DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x的函数图象大致为()第1题图A.B.C.D.考点:动点问题的函数图象.分析:判断出△AEF和△ABC相似,根据相似三角形对应边成比例列式求出EF,再根据三角形的面积列式表示出S与x的关系式,然后得到大致图象选择即可.解答:解:∵EF∥BC,∴△AEF∽△ABC,∴=,备课大师网:免费备课第一站!://∴EF=•10=10﹣2x,∴S=(10﹣2x)•x=﹣x2+5x=﹣(x﹣)2+,∴S与x的关系式为S=﹣(x﹣)2+(0<x<10),纵观各选项,只有D选项图象符合.故选D.点评:本题考查了动点问题函数图象,主要利用了相似三角形的性质,求出S与x的函数关系式是解题的关键,也是本题的难点.4.(2014•四川绵阳,第12题3分)如图,AB是半圆O的直径,C是半圆O上一点,OQ⊥BC于点Q,过点B作半圆O的切线,交OQ的延长线于点P,PA交半圆O于R,则下列等式中正确的是()A.=B.=C.=D.=考点:切线的性质;平行线的判定与性质;三角形中位线定理;垂径定理;相似三角形的判定与性质专题:探究型.分析:(1)连接AQ,易证△OQB∽△OBP,得到,也就有,可得△OAQ∽OPA,从而有∠OAQ=∠APO.易证∠CAP=∠APO,从而有∠CAP=∠OAQ,则有∠CAQ=∠BAP,从而可证△ACQ∽△ABP,可得,所以A正确.(2)由△OBP∽△OQB得,即,由AQ≠OP得,故C不正确.(3)连接OR,易得=,=2,得到,故B不正确.(4)由及AC=2OQ,AB=2OB,OB=OR可得,由AB≠AP得,故D不正确.解答:解:(1)连接AQ,如图1,∵BP与半圆O于点B,AB是半圆O的直径,∴∠ABP=∠ACB=90°.∵OQ⊥BC,备课大师网:免费备课第一站!://∴∠OQB=90°.∴∠OQB=∠OBP=90°.又∵∠BOQ=∠POB,∴△OQB∽△OBP.∴.∵OA=OB,∴.又∵∠AOQ=∠POA,∴△OAQ∽△OPA.∴∠OAQ=∠APO.∵∠OQB=∠ACB=90°,∴AC∥OP.∴∠CAP=∠APO.∴∠CAP=∠OAQ.∴∠CAQ=∠BAP.∵∠ACQ=∠ABP=90°,∴△ACQ∽△ABP.∴.故A正确.(2)如图1,∵△OBP∽△OQB,∴.∴.∵AQ≠OP,∴.故C不正确.(3)连接OR,如图2所示.∵OQ⊥BC,∴BQ=CQ.∵AO=BO,∴OQ=AC.∵OR=AB.∴=,=2.∴≠.∴.备课大师网:免费备课第一站!://故B不正确.(4)如图2,∵,且AC=2OQ,AB=2OB,OB=OR,∴.∵AB≠AP,∴.故D不正确.故选:A.点评:本题考查了切线的性质,相似三角形的判定与性质、平行线的判定与性质、垂径定理、三角形的中位线等知识,综合性较强,有一定的难度.5.(2014•河北第13题3分)在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对考点:相似三角形的判定;相似多边形的性质备课大师网:免费备课第一站!://分析:甲:根据题意得:AB∥A′B′,AC∥A′C′,BC∥B′C′,即可证得∠A=∠A′,∠B=∠B′,可得△ABC∽△A′B′C′;乙:根据题意得:AB=CD=3,AD=BC=5,则A′B′=C′D′=3+2=5,A′D′=B′C′=5+2=7,则可得,即新矩形与原矩形不相似.解答:解:甲:根据题意得:AB∥A′B′,AC∥A′C′,BC∥B′C′,∴∠A=∠A′,∠B=∠B′,∴△ABC∽△A′B′C′,∴甲说法正确;乙:∵根据题意得:AB=CD=3,AD=BC=5,则A′B′=C′D′=3+2=5,A′D′=B′C′=5+2=7,∴,,∴,∴新矩形与原矩形不相似.∴乙说法正确.故选A.点评:此题考查了相似三角形以及相似多边形的判定.此题难度不大,注意掌握数形结合思想的应用.6.二、填空题1.(2014•黔南州,第15题5分)如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC.若AD=4,DB=2,则的值为.[来源:中@&%国*教育出版网^]考点:相似三角形的判定与性质.分析:由AD=3,DB=2,即可求得AB的长,又由DE∥BC,根据平行线分线段成比例定理,可得DE:BC=AD:AB,则可求得答案.备课大师网:免费备课第一站!://解答:解:∵AD=4,DB=2,∴AB=AD+BD=4+2=6,∵DE∥BC,△ADE∽△ABC,∴=,故答案为:.点评:此题考查了平行线分线段成比例定理.此题比较简单,注意掌握比例线段的对应关系是解此题的关键.2.(2014•攀枝花,第16题4分)如图,在梯形ABCD中,AD∥BC,BE平分∠ABC交CD于E,且BE⊥CD,CE:ED=2:1.如果△BEC的面积为2,那么四边形ABED的面积是.考点:相似三角形的判定与性质;等腰三角形的判定与性质;梯形.分析:首先延长BA,CD交于点F,易证得△BEF≌△BEC,则可得DF:FC=1:4,又由△ADF∽△BCF,根据相似三角形的面积比等于相似比的平方,可求得△ADF的面积,继而求得答案.解答:解:延长BA,CD交于点F,∵BE平分∠ABC,∴∠EBF=∠EBC,∵BE⊥CD,∴∠BEF=∠BEC=90°,在△BEF和△BEC中,,∴△BEF≌△BEC(ASA),∴EC=EF,S△BEF=S△BEC=2,∴S△BCF=S△BEF+S△BEC=4,∵CE:ED=2:1∴DF:FC=1:4,∵AD∥BC,∴△ADF∽△BCF,∴=()2=,∴S△ADF=×4=,备课大师网:免费备课第一站!://∴S四边形ABCD=S△BEF﹣S△ADF=2﹣=.故答案为:.点评:此题考查了相似三角形的判定与性质、全等三角形的判定与性质以及梯形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.3.(2014•黑龙江哈尔滨,第20题3分)如图,在△ABC中,4AB=5AC,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD于点F,点G在AF上,FG=FD,连接EG交AC于点H.若点H是AC的中点,则的值为.第1题图考点:相似三角形的判定与性质;全等三角形的判定与性质;角平分线的性质;等腰三角形的判定与性质;平行四边形的判定与性质.分析:解题关键是作出辅助线,如解答图所示:第1步:利用角平分线的性质,得到BD=CD;第2步:延长AC,构造一对全等三角形△ABD≌△AMD;第3步:过点M作MN∥AD,构造平行四边形DMNG.由MD=BD=KD=CD,得到等腰△DMK;然后利用角之间关系证明DM∥GN,从而推出四边形DMNG为平行四边形;第4步:由MN∥AD,列出比例式,求出的值.解答:解:已知AD为角平分线,则点D到AB、AC的距离相等,设为h.∵====,∴BD=CD.如右图,延长AC,在AC的延长线上截取AM=AB,则有AC=4CM.连接DM.在△ABD与△AMD中,备课大师网:免费备课第一站!://∴△ABD≌△AMD(SAS),∴MD=BD=5m.过点M作MN∥AD,交EG于点N,交DE于点K.∵MN∥AD,∴==,∴CK=CD,∴KD=CD.∴MD=KD,即△DMK为等腰三角形,∴∠DMK=∠DKM.由题意,易知△EDG为等腰三角形,且∠1=∠2;∵MN∥AD,∴∠3=∠4=∠1=∠2,又∵∠DKM=∠3(对顶角)∴∠DMK=∠4,∴DM∥GN,∴四边形DMNG为平行四边形,∴MN=DG=2FD.∵点H为AC中点,AC=4CM,∴=.∵MN∥AD,∴=,即,∴=.点评:本题是几何综合题,难度较大,正确作出辅助线是解题关键.在解题过程中,需要综合利用各种几何知识,例如相似、全等、平行四边形、等腰三角形、角平分线性质等,对考生能力要求较高.4.(2014•黑龙江牡丹江,第14题3分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ的影子有一部分落在了墙上,PM=1.2m,MN=0.8m,则木竿PQ的长度为2.3m.第2题图考点:相似三角形的应用.专题:应用题.备课大师网:免费备课第一站!://分析:先根据同一