2010年高考数学(理科)参考答案(全国卷Ⅰ)2010年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。第I卷1至2页。第Ⅱ卷3至4页。考试结束后,将本试卷和答题卡一并交回。第I卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试..题卷上作答无效.......。3.第I卷共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。参考公式:[来源:Z.xx.k.Com]如果事件互斥,那么球的表面积公式如果事件相互独立,那么其中R表示球的半径球的体积公式如果事件A在一次试验中发生的概率是,那么次独立重复试验中事件恰好发生次的概率其中R表示球的半径一.选择题(1)复数(A)(B)(C)12-13(D)12+131.A【命题意图】本小题主要考查复数的基本运算,重点考查分母实数化的转化技巧.【解析】.(2)记,那么A.B.-C.D.-2.B【命题意图】本小题主要考查诱导公式、同角三角函数关系式等三角函数知识,并突出了弦切互化这一转化思想的应用.【解析】,所以(3)若变量满足约束条件则的最大值为(A)4(B)3(C)2(D)1[来源:学科网]3.B【命题意图】本小题主要考查线性规划知识、作图、识图能力及计算能力.【解析】画出可行域(如右图),由图可知,当直线经过点A(1,-1)时,z最大,且最大值为.(4)已知各项均为正数的等比数列{},=5,=10,则=(A)(B)7(C)6(D)4.A【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.【解析】由等比数列的性质知,10,所以,所以(5)的展开式中x的系数是(A)-4(B)-2(C)2(D)45.B【命题意图】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.【解析】故的展开式中含x的项为,所以x的系数为-2.(6)某校开设A类选修课3门,B类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有(A)30种(B)35种(C)42种(D)48种6.A【命题意图】本小题主要考查分类计数原理、组合知识,以及分类讨论的数学思想.【解析】:可分以下2种情况:(1)A类选修课选1门,B类选修课选2门,有种不同的选法;(2)A类选修课选2门,B类选修课选1门,有种不同的选法.所以不同的选法共有+种.(7)正方体ABCD-中,B与平面AC所成角的余弦值为ABCD7.D【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D到平面AC的距离是解决本题的关键所在,这也是转化思想的具体体现.【解析】因为BB1//DD1,所以B与平面AC所成角和DD1与平面AC所成角相等,设DO⊥平面AC,由等体积法得,即.设DD1=a,则,.[来源:学&科&网]所以,记DD1与平面AC所成角为,则,所以.(8)设a=2,b=In2,c=,则AabcBbcaCcabDcba8.C【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用.【解析】a=2=,b=In2=,而,所以ab,c==,而,所以ca,综上cab.(9)已知、为双曲线C:的左、右焦点,点p在C上,∠p=,则P到x轴的距离为(A)(B)(C)(D)9.B【命题意图】本小题主要考查双曲线的几何性质、第二定义、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力.【解析】不妨设点P在双曲线的右支,由双曲线的第二定义得,.由余弦定理得cos∠P=,即cos,解得,所以,故P到x轴的距离为(10)已知函数F(x)=|lgx|,若0ab,且f(a)=f(b),则a+2b的取值范围是(A)(B)(C)(D)10.A【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a的取值范围,而利用均值不等式求得a+2b,从而错选A,这也是命题者的用苦良心之处.【解析】因为f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或,所以a+2b=又0ab,所以0a1b,令,由“对勾”函数的性质知函数在(0,1)上为减函数,所以f(a)f(1)=1+=3,即a+2b的取值范围是(3,+∞).(11)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为俩切点,那么的最小值为(A)(B)(C)(D)11.D【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力.【解析】如图所示:设PA=PB=,∠APO=,则∠APB=,PO=,,===,令,则,即,由是实数,所以,,解得或.故.此时.(12)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为(A)(B)(C)(D)12.B【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD作平面PCD,使AB⊥平面PCD,交AB与P,设点P到CD的距离为,则有,当直径通过AB与CD的中点时,,故.绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修II)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。请认真核准条形码上的准考证号、姓名和科目。2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.........。3。第Ⅱ卷共l0小题,共90分。二.填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效)(13)不等式的解集是.13.[0,2]【命题意图】本小题主要考查根式不等式的解法,利用平方去掉根号是解根式不等式的基本思路,也让转化与化归的数学思想体现得淋漓尽致.解析:原不等式等价于解得0≤x≤2.(14)已知为第三象限的角,,则.14.【命题意图】本小题主要考查三角函数值符号的判断、同角三角函数关系、和角的正切公式,同时考查了基本运算能力及等价变换的解题技能.【解析】因为为第三象限的角,所以,又0,所以,于是有,,所以.(15)直线与曲线有四个交点,则的取值范围是.15.(1,【命题意图】本小题主要考查函数的图像与性质、不等式的解法,着重考查了数形结合的数学思想.【解析】如图,在同一直角坐标系内画出直线与曲线,观图可知,a的取值必须满足解得.(16)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为.16.【命题意图】本小题主要考查椭圆的方程与几何性质、第二定义、平面向量知识,考查了数形结合思想、方程思想,本题凸显解析几何的特点:“数研究形,形助数”,利用几何性质可寻求到简化问题的捷径.【解析】如图,,作轴于点D1,则由,得,所以,即,由椭圆的第二定义得又由,得,整理得.两边都除以,得,解得.三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分)(注意:在试题卷上作答无效............)已知的内角,及其对边,满足,求内角.17.【命题意图】本小题主要考查三角恒等变形、利用正弦、余弦定理处理三角形中的边角关系,突出考查边角互化的转化思想的应用.(18)(本小题满分12分)(注意:在试题卷上作答无效.........).[.来源..:.学科网...].投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(I)求投到该杂志的1篇稿件被录用的概率;(II)记表示投到该杂志的4篇稿件中被录用的篇数,求的分布列及期望.18.【命题意图】本题主要考查等可能性事件、互斥事件、独立事件、相互独立试验、分布列、数学期望等知识,以及运用概率知识解决实际问题的能力,考查分类与整合思想、化归与转化思想.(19)(本小题满分12分)(注意:在试题卷上作答无效.........)如图,四棱锥S-ABCD中,SD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC平面SBC.(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A-DE-C的大小.【命题意图】本小题主要考查空间直线与直线、直线与平面、平面与平面的位置关系,二面角等基础知识,考查空间想象能力、推理论证能力和运算能力.(20)(本小题满分12分)(注意:在试题卷上作答无效.........)已知函数.(Ⅰ)若,求的取值范围;(Ⅱ)证明:.【命题意图】本小题主要考查函数、导数、不等式证明等知识,通过运用导数知识解决函数、不等式问题,考查了考生综合运用数学知识解决问题的能力以及计算能力,同时也考查了函数与方程思想、化归与转化思想.(21)(本小题满分12分)(注意:在试题卷上作答无效.........)已知抛物线的焦点为F,过点的直线与相交于、两点,点A关于轴的对称点为D.(Ⅰ)证明:点F在直线BD上;(Ⅱ)设,求的内切圆M的方程.【命题意图】本小题为解析几何与平面向量综合的问题,主要考查抛物线的性质、直线与圆的位置关系,直线与抛物线的位置关系、圆的几何性质与圆的方程的求解、平面向量的数量积等知识,考查考生综合运用数学知识进行推理论证的能力、运算能力和解决问题的能力,同时考查了数形结合思想、设而不求思想..[来源:学科网](22)(本小题满分12分)(注意:在试题卷上作答无效.........)已知数列中,.(Ⅰ)设,求数列的通项公式;(Ⅱ)求使不等式成立的的取值范围.【命题意图】本小题主要考查数列的通项公式、等比数列的定义、递推数列、不等式等基础知识和基本技能,同时考查分析、归纳、探究和推理论证问题的能力,在解题过程中也渗透了对函数与方程思想、化归与转化思想的考查.