(整理)4-4~曲线参数方程_之意义和圆的参数方程ppt

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

4.4.1曲线参数方程的意义如图,一架救援飞机在离灾区地面500m高处以100m/s的速度作水平直线飞行.为使投放救援物资准确落于灾区指定的地面(不记空气阻力),飞行员应如何确定投放时机呢?友情提示:即求飞行员在离救援点的水平距离多远时,开始投放物资??救援点投放点创造情境xy500O分析:物资投出机舱后,它的运动由下列两种运动合成:(1)沿Ox作初速为100m/s的匀速直线运动;(2)沿Oy反方向作自由落体运动.创造情境如图,一架救援飞机在离灾区地面500m高处以100m/s的速度作水平直线飞行.为使投放救援物资准确落于灾区指定的地面(不记空气阻力),飞行员应如何确定投放时机呢?xy500o0,y令10.10.ts得100,1010.xtxm代入得.1010所m以,飞行员在离救援点的水平距离约为时投放物资,可以使其准确落在指定位置txy解:建立如图所示坐标系,物资出舱后,设在时刻,水平位移为,垂直高度为,所以2100,1500.2xtygt)2(g=9.8m/s如图,一架救援飞机在离灾区地面500m高处以100m/s的速度作水平直线飞行.为使投放救援物资准确落于灾区指定的地面(不记空气阻力),飞行员应如何确定投放时机呢?(),().xftygt(1)且对于t的每一个允许值,由方程组(1)所确定的点M(x,y)都在这条曲线上,则方程(1)就叫做这条曲线的参数方程,联系变数x,y的变数t叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。1、参数方程的概念:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数关于参数几点说明:参数是联系变数x,y的桥梁,1.参数方程中参数可以是有物理意义,几何意义,也可以没有明显意义;2.同一曲线选取参数不同,曲线参数方程形式也不一样;3.在实际问题中要确定参数的取值范围;一架救援飞机以100m/s的速度作水平直线飞行.在离灾区指定目标1000m时投放救援物资(不计空气阻力,重力加速g=10m/s),问此时飞机的飞行高度约是多少?(精确到1m)变式练习:x=100t=1000,t=10,y=gt2/2=10×102/2=500m.例1:已知曲线C的参数方程是(1)判断点M1(0,1),M2(5,4)与曲线C的位置关系;(2)已知点M3(6,a)在曲线C上,求a的值。23,()21.xttyt为参数解:(1)把点M1的坐标(0,1)代入方程组,解得t=0,所以M1在曲线上.124352tt把点M2的坐标(5,4)代入方程组,得到12362tat(2)因为点M3(6,a)在曲线C上,所以解得t=2,a=9所以,a=9.为参数)ttytx(3412练习1、曲线与x轴的交点坐标是()BA(1,4);B(25/16,0)C(1,-3)D(±25/16,0))(cossin为参数yx2、方程所表示的曲线上一点的坐标是()DA(2,7);B(1/3,2/3)C(1/2,1/2)D(1,0)4.已知动点M作匀速直线运动,它在x轴和y轴方向的速度分别为5和12,运动开始时位于点P(1,2),求点M的轨迹参数方程。解:设动点M(x,y)运动时间为t,依题意,得tytx12251所以,点M的轨迹参数方程为tytx12251轨迹是所表示的一族圆的圆心参数为、由方程)(045245222tttytxyxA一个定点B一个椭圆C一条抛物线D一条直线D一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数(),().xftygt(1)并且对于t的每一个允许值,由方程组(1)所确定的点M(x,y)都在这条曲线上,那么方程(1)就叫做这条曲线的参数方程,系变数x,y的变数t叫做参变数,简称参数。课堂小结yxorM(x,y)0M圆周运动中,当物体绕定轴作匀速运动时,物体上的各个点都作匀速圆周运动,怎样刻画运动中点的位置呢?cos()sinxryr为参数vbaPxyrxOy圆心为原点半径为r的圆的参数方程.其中参数θ的几何意义是OM0绕点O逆时针旋转到OM的位置时,OM0转过的角度)(sincos为参数rbyrax),(1baO圆心为,半径为r的圆的参数方程一般地,同一条曲线,可以选取不同的变数为参数,另外,要注明参数及参数的取值范围。解:x2+y2+2x-6y+9=0化为标准方程,(x+1)2+(y-3)2=1∴参数方程为sin3cos1yx(θ为参数)例1已知圆方程x2+y2+2x-6y+9=0,将它化为参数方程。例2如图,圆O的半径为2,P是圆上的动点,Q(6,0)是x轴上的定点,M是PQ的中点,当点P绕O作匀速圆周运动时,求点M的轨迹的参数方程。yoxPMQxOP2cos62sin3cos,sin22xy3cos,()sin.xy为参数解:设点M的坐标是(x,y),则点P的坐标是(2cosθ,2sinθ).由中点坐标公式可得因此,点M的轨迹的参数方程是33(12cos)(22sin)156cos2sin5210cos()(tan)3Sxy所以maxmin5210,5210SS4)2()1(22yxyxS3例3已知x、y满足,求的最大值和最小值.12cos,()22sin.xy为参数解:由已知圆的参数方程为2254,_________xyxy、若则的最大值是222cos4{(2sin)xxyy解:的参数方程为为参数2cos2sin22cos()422xy最大值为4.4.2参数方程和普通方程的互化学习目标:1)掌握参数方程化为普通方程几种基本方法;2)选取适当的参数化普通方程为参数方程;学习重点、难点:参数方程与普通方程的等价性;cos3,()sinxMy由参数方程为参数直接判断点的轨迹的曲线类型并不容易,但如果将参数方程转化为熟悉的普通方程,则比较简单。2222cos3,sincos(3)1sinxxyyM由参数方程得:所以点的轨迹是圆心在(3,0),半径为1的圆。创设情境(1)参数方程通过代入消元或加减消元消去参数化为普通方程如:①参数方程.sin,cosrbyrax消去参数可得圆的普通方程(x-a)2+(y-b)2=r2..42,tytx②参数方程(t为参数)可得普通方程:y=2x-4通过代入消元法消去参数t,(x≥0)注意:在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致。否则,互化就是不等价的.1.参数方程和普通方程的互化:知识点分析示例1、把下列参数方程化为普通方程,并说明它们各表示什么曲线?1()12tytx=t(1)为参数sincos().1sin2yx=(2)为参数(1)11231)11xtyx解:因为所以普通方程是(x这是以(,)为端点的一条射线(包括端点)2(2)sincos2sin()42,2,2,2.因为:所以所以普通方程是xxxyx示例分析xoy22这是抛物线的一部分。普通方程为所以与参数方程等价的].2,2[,2xyx练习1、将下列参数方程化为普通方程:sin3cos32yx(1)2cossinyx(2)(3)x=t+1/ty=t2+1/t2解答:(1)(x-2)2+y2=9(2)y=1-2x2(-1≤x≤1)(3)x2-y=2(x≥2或x≤-2)步骤:(1)消参;(2)求定义域;巩固练习例2、求参数方程)20()sin1(21|,2sin2cos|yx表示()(A)双曲线的一支,这支过点(1,1/2):(B)抛物线的一部分,这部分过(1,1/2):(C)双曲线的一支,这支过点(–1,1/2)(D)抛物线的一部分,这部分过(–1,1/2)B示例分析分析一般思路是:化参数方程为普通方程求出范围、判断。解x2=2)2sin2(cos=1+sin=2y,普通方程是x2=2y,为抛物线。)42sin(2|2sin2cos|x,又02,0x2,故应选(B)说明:这里切不可轻易去绝对值讨论,平方法是最好的方法。总结:参数方程化为普通方程的过程就是消参过程常见方法有三种:1.代入法:利用解方程的技巧求出参数t,然后代入消去参数;2.三角法:利用三角恒等式消去参数;3.整体消元法:根据参数方程本身结构特征,从整体上消去;化参数方程为普通方程为F(x,y)=0:在消参过程中注意变量x、y取值范围的一致性,必须根据参数的取值范围,确定f(t)和g(t)值域得x、y的取值范围。知识点分析参数方程和普通方程的互化:(2)普通方程化为参数方程需要引入参数如:①直线L的普通方程是2x-y+2=0,可以化为参数方程.22,tytx(t为参数)②在普通方程xy=1中,令x=tan,可以化为参数方程.cot,tanyx(为参数)例3(1)设x=3cos,为参数;2.tt(2)设y=,为参数22194xy求椭圆的参数方程。示例分析)(sin2cos3{149,sin2sin2sin4)cos1(4,149cos9cos312222222为参数的参数方程是所以椭圆的任意性,可取由参数即所以代入椭圆方程,得到)把解:(yxyxyyyyxtytxttytxyxtxtxtxty213{)(213{14913),1(9144922222222222和为参数的参数方程是所以,椭圆于是代入椭圆方程,得)把(x,y范围与y=x2中x,y的范围相同,2tytx代入y=x2后满足该方程,从而D是曲线y=x2的一种参数方程.2224sinABCDsinxtxtxtxtytytytyt、、、、练习2:曲线y=x2的一种参数方程是().注意:在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致。否则,互化就是不等价的.在y=x2中,x∈R,y≥0,分析:发生了变化,因而与y=x2不等价;在A、B、C中,x,y的范围都而在D中,且以的交点。为参数求它与曲线为参数程为、若已知直线的参数方)(sin2cos2{)(11{3yxttytx普通方程参数方程引入参数消去参数课堂小结作业:完成习题;

1 / 33
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功