12011中考数学试题及答案分类汇编:圆一、选择题1.(天津3分)已知⊙1O与⊙2O的半径分别为3cm和4cm,若12OO=7cm,则⊙1O与⊙2O的位置关系是(A)相交(B)相离(C)内切(D)外切【答案】D。【考点】圆与圆位置关系的判定。【分析】两圆半径之和3+4=7,等于两圆圆心距12OO=7,根据圆与圆位置关系的判定可知两圆外切。2.(内蒙古包头3分)已知两圆的直径分别是2厘米与4厘米,圆心距是3厘米,则这两个圆的位置关系是A、相交B、外切C、外离D、内含【答案】B。【考点】两圆的位置关系。【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。∵两圆的直径分别是2厘米与4厘米,∴两圆的半径分别是1厘米与2厘米。∵圆心距是1+2=3厘米,∴这两个圆的位置关系是外切。故选B。3,(内蒙古包头3分)已知AB是⊙O的直径,点P是AB延长线上的一个动点,过P作⊙O的切线,切点为C,∠APC的平分线交AC于点D,则∠CDP等于2A、30°B、60°C、45°D、50°【答案】【考点】角平分线的定义,切线的性质,直角三角形两锐角的关系,三角形外角定理。【分析】连接OC,∵OC=OA,,PD平分∠APC,∴∠CPD=∠DPA,∠CAP=∠ACO。∵PC为⊙O的切线,∴OC⊥PC。∵∠CPD+∠DPA+∠CAP+∠ACO=90°,∴∠DPA+∠CAP=45°,即∠CDP=45°。故选C。4.(内蒙古呼和浩特3分)如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为A.14B.15C.32D.23【答案】B。【考点】圆周角定理,圆的轴对称性,等腰梯形的判定和性质,勾股定理。【分析】以A为圆心,AB长为半径作圆,延长BA交⊙A于F,连接DF。根据直径所对圆周角是直角的性质,得∠FDB=90°;根据圆的轴对称性和DC∥AB,得四边形FBCD是等腰梯形。∴DF=CB=1,BF=2+2=4。∴BD=2222BFDF4115。故选B。5.(内蒙古呼伦贝尔3分)⊙O1的半径是cm2,⊙2的半径是cm5,圆心距是cm4,则两圆的位置关系为A.相交B.外切C.外离D.内切3【答案】A。【考点】两圆的位置关系。【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。由于5-2<4<5+2,所以两圆相交。故选A。6.(内蒙古呼伦贝尔3分)如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为.A.5B.4C..3D.2【答案】C。【考点】垂直线段的性质,弦径定理,勾股定理。【分析】由直线外一点到一条直线的连线中垂直线段最短的性质,知线段OM长的最小值为点O到弦AB的垂直线段。如图,过点O作OM⊥AB于M,连接OA。根据弦径定理,得AM=BM=4,在Rt△AOM中,由AM=4,OA=5,根据勾股定理得OM=3,即线段OM长的最小值为3。故选C。7.(内蒙古呼伦贝尔3分)如图,AB是⊙O的直径,点C、D在⊙O上,∠BOD=110°,AC∥OD,则∠AOC的度数A.70°B.60°C.50°D.40°【答案】D。【考点】等腰三角形的性质,三角形内角和定理,平角定义,平行的性质。【分析】由AB是⊙O的直径,点C、D在⊙O上,知OA=OC,根据等腰三角形等边对等角的性质和三角形内角和定理,得∠AOC=1800-2∠OAC。由AC∥OD,根据两直线平行,内错角相等的性质,得∠OAC=∠AOD。4由AB是⊙O的直径,∠BOD=110°,根据平角的定义,得∠AOD=1800-∠BOD=70°。∴∠AOC=1800-2×70°=400。故选D。8.(内蒙古乌兰察布3分)如图,AB为⊙O的直径,CD为弦,AB⊥CD,如果∠BOC=700,那么∠A的度数为A700B.350C.300D.200【答案】B。【考点】弦径定理,圆周角定理。【分析】如图,连接OD,AC。由∠BOC=700,根据弦径定理,得∠DOC=1400;根据同弧所对圆周角是圆心角一半的性质,得∠DAC=700。从而再根据弦径定理,得∠A的度数为350。故选B。17.填空题1.(天津3分)如图,AD,AC分别是⊙O的直径和弦.且∠CAD=30°.OB⊥AD,交AC于点B.若OB=5,则BC的长等于▲。【答案】5。【考点】解直角三角形,直径所对圆周角的性质。【分析】∵在Rt△ABO中,00OB5OB5AO53,AB10tanCADtan30sinCADsin30C,∴AD=2AO=103。5连接CD,则∠ACD=90°。∵在Rt△ADC中,0ACADcosCAD103cos3015,∴BC=AC-AB=15-10=5。2.(河北省3分)如图,点0为优弧ACB错误!未找到引用源。所在圆的圆心,∠AOC=108°,点D在AB延长线上,BD=BC,则∠D=▲.【答案】27°。【考点】圆周角定理,三角形的外角定理,等腰三角形的性质。【分析】∵∠AOC=108°,∴∠ABC=54°。∵BD=BC,∴∠D=∠BCD=错误!未找到引用源。∠ABC=27°。3.(内蒙古巴彦淖尔、赤峰3分)如图,直线PA过半圆的圆心O,交半圆于A,B两点,PC切半圆与点C,已知PC=3,PB=1,则该半圆的半径为▲.【答案】4。【考点】切线的性质,勾股定理。【分析】连接OC,则由直线PC是圆的切线,得OC⊥PC。设圆的半径为x,则在Rt△OPC中,PC=3,OC=x,OP=1+x,根据地勾股定理,得OP2=OC2+PC2,即(1+x)2=x2+32,解得x=4。即该半圆的半径为4。【学过切割线定理的可由PC2=PA•PB求得PA=9,再由AB=PA-PB求出直径,从而求得半径】4.(内蒙古呼伦贝尔3分)已知扇形的面积为12,半径是6,则它的圆心角是▲。【答案】1200。6【考点】扇形面积公式。【分析】设圆心角为n,根据扇形面积公式,得20n612360=,解得n=1200。18.解答题1.(天津8分)已知AB与⊙O相切于点C,OA=OB.OA、OB与⊙O分别交于点D、E.(I)如图①,若⊙O的直径为8,AB=10,求OA的长(结果保留根号);(Ⅱ)如图②,连接CD、CE,若四边形ODCE为菱形.求ODOA的值.【答案】解:(I)如图①,连接OC,则OC=4。∵AB与⊙O相切于点C,∴OC⊥AB。∴在△OAB中,由OA=OB,AB=10得1ACAB52。∴在△RtOAB中,2222OAOCAC4541。(Ⅱ)如图②,连接OC,则OC=OD。∵四边形ODCE为菱形,∴OD=DC。∴△ODC为等边三角形。∴∠AOC=600。∴∠A=300。∴1OC1OD1OCOA2OA2OA2,,即。【考点】线段垂直平分线的判定和性质,勾股定理,等边三角形的判定和性质,300角直角三角形的性质。7【分析】(I)要求OA的长,就要把它放到一个直角三角形内,故作辅助线OC,由AB与⊙O相切于点C可知OC是AB的垂直平分线,从而应用勾股定理可求OA的长。(Ⅱ)由四边形ODCE为菱形可得△ODC为等边三角形,从而得300角的直角三角形OAC,根据300角所对的边是斜边的一半的性质得到所求。2.(河北省10分)如图1至图4中,两平行线AB、CD间的距离均为6,点M为AB上一定点.思考如图1,圆心为0的半圆形纸片在AB,CD之间(包括AB,CD),其直径MN在AB上,MN=8,点P为半圆上一点,设∠MOP=α.当α=▲度时,点P到CD的距离最小,最小值为▲.探究一在图1的基础上,以点M为旋转中心,在AB,CD之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,得到最大旋转角∠BMO=▲度,此时点N到CD的距离是▲.探究二将如图1中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点M在AB,CD之间顺时针旋转.(1)如图3,当α=60°时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角∠BMO的最大值;(2)如图4,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围.(参考数椐:sin49°=错误!未找到引用源。,cos41°=错误!未找到引用源。,tan37°=错误!未找到引用源。.)8【答案】解:思考:90,2。探究一:30,2。探究二(1)当PM⊥AB时,点P到AB的最大距离是MP=OM=4,从而点P到CD的最小距离为6﹣4=2。当扇形MOP在AB,CD之间旋转到不能再转时,弧MP与AB相切,此时旋转角最大,∠BMO的最大值为90°。(2)如图4,由探究一可知,点P是弧MP与CD的切线时,α大到最大,即OP⊥CD,此时延长PO交AB于点H,α最大值为∠OMH+∠OHM=30°+90°=120°,如图5,当点P在CD上且与AB距离最小时,MP⊥CD,α达到最小,连接MP,作HO⊥MP于点H,由垂径定理,得出MH=3。9在Rt△MOH中,MO=4,∴sin∠MOH=MH3OM4错误!未找到引用源。。∴∠MOH=49°。∵α=2∠MOH,∴α最小为98°。∴α的取值范围为:98°≤α≤120°。【考点】直线与圆的位置关系,点到直线的距离,平行线之间的距离,切线的性质,旋转的性质,解直角三角形。【分析】思考:根据两平行线之间垂线段最短,直接得出答案,当α=90度时,点P到CD的距离最小,∵MN=8,∴OP=4,∴点P到CD的距离最小值为:6﹣4=2。探究一:∵以点M为旋转中心,在AB,CD之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,∵MN=8,MO=4,NQ=4,∴最大旋转角∠BMO=30度,点N到CD的距离是2。探究二:(1)由已知得出M与P的距离为4,PM⊥AB时,点MP到AB的最大距离是4,从而点P到CD的最小距离为6﹣4=2,即可得出∠BMO的最大值。(2)分别求出α最大值为∠OMH+∠OHM=30°+90°以及最小值α=2∠MOH,即可得出α的取值范围。3.(内蒙古呼和浩特8分)如图所示,AC为⊙O的直径且PA⊥AC,BC是⊙O的一条弦,直线PB交直线AC于点D,错误!未找到引用源。.(1)求证:直线PB是⊙O的切线;(2)求cos∠BCA的值.【答案】(1)证明:连接OB、OP10∵DBDC2DPDO3且∠D=∠D,∴△BDC∽△PDO。∴∠DBC=∠DPO。∴BC∥OP。∴∠BCO=∠POA,∠CBO=∠BOP。∵OB=OC,∴∠OCB=∠CBO。∴∠BOP=∠POA。又∵OB=OA,OP=OP,∴△BOP≌△AOP(SAS)。∴∠PBO=∠PAO。又∵PA⊥AC,∴∠PBO=90°。∴直线PB是⊙O的切线。(2)由(1)知∠BCO=∠POA。设PBa,则BD=a2,又∵PA=PBa,∴AD=22a。又∵BC∥OP,∴DC2CO。∴1DCCA2222aa。∴2OA2a。∴6OP2a∴cos∠BCA=cos∠POA=33。【考点】切线的判定和性质,平行的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,锐角三角函数的定义,勾股定理,切线长定理。【分析】(1)连接OB、OP,由错误!未找到引用源。,且∠D=∠D,根据三角形相似的判定得到△BDC∽△PDO,可得到BC∥OP,易证得△BOP≌△AOP,则∠PBO=∠PAO=90°。(2)设PBa,则BD=a2,根据切线长定理得到PA=PBa,根据勾股定理得到AD=22a,又BC∥OP,得到DC=2CO,得到1DCCA2222aa,则112OA2a,利用勾股定理求出OP,然后根据余弦函数的定义即可求出cos∠BCA=cos∠POA的值。