高三数学强化训练(23)1.函数22()lg(sincos)fxxx的定义城是A.322,44xkxkkZB.522,44xkxkkZC.,44xkxkkZD.3,44xkxkkZ2.已知函数()2sin()fxx对任意x都有()(),66fxfx则()6f等于A.2或0B.2或2C.0D.2或03.设()fx是定义域为R,最小正周期为32的函数,若cos,(0)(),2sin,(0)xxfxxx则15()4f等于A.1B.22C.0D.224.曲线sin(0,0)yAxaA在区间2[0,]上截直线2y及1y所得的弦长相等且不为0,则下列对,Aa的描述正确的是A.13,22aAB.13,22aAC.1,1aAD.1,1aA5.若函数()sin2tan1fxaxbx,且(3)5,f则(3)f___________。6.已知函数)(xfy的图象上的每一点的纵坐标扩大到原来的4倍,横坐标扩大到原来的2倍,然后把所得的图象沿x轴向左平移2,这样得到的曲线和xysin2的图象相同,则已知函数)(xfy的解析式为_______________________________.7.求使函数3cos(3)sin(3)yxx是奇函数。8.已知定义在区间2[,]3上的函数()yfx的图象关于直线6x对称,当2[,]63x时,函数)22,0,0()sin()(AxAxf,其图象如图所示.(1)求函数)(xfy在]32,[的表达式;(2)求方程22)(xf的解.参考答案xyoπ16x3261.D223sincos0,cos20,cos20,22222xxxxkxk2.B对称轴,()266xf3.B15153332()(3)()sin442442fff4.A图象的上下部分的分界线为2(1)113,,23,2222yaAA得且5.3显然,(3)(3)Tff,令()()1sin2tanFxfxaxx为奇函数(3)(3)14,(3)(3)14,(3)3FfFff6.1sin(2)22yx2sin2sin()2yxyx右移个单位横坐标缩小到原来的2倍22sin(2)2yx1sin(2)22yx总坐标缩小到原来的4倍7.解:2[sincos(3)cossin(3)]33yxx2sin(3)3x,为奇函数,则,,33kkkZ8.解:(1)2[,]63x,21,,2,1436TAT且()sin()fxx过2(,0)3,则2,,()sin()333fxx当6x时,2,()sin()633333xfxx而函数()yfx的图象关于直线6x对称,则()()3fxfx即()sin()sin33fxxx,6x2sin(),[,]363()sin,[,)6xxfxxx(2)当263x时,63x,2()sin()32fxx35,,,3441212xx或或当6x时,22()sin,sin22fxxx3,44x或35,,,441212x或为所求。tesoon天·星om权天·星om权Tesoon.com天星版权tesoon天星