2011届高考物理曲线运动和万有引力典型问题剖析1

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

曲线运动、万有引力典型问题剖析问题1:会用曲线运动的条件分析求解相关问题。例1、质量为m的物体受到一组共点恒力作用而处于平衡状态,当撤去某个恒力F1时,物体可能做()A.匀加速直线运动;B.匀减速直线运动;C.匀变速曲线运动;D.变加速曲线运动。分析与解:当撤去F1时,由平衡条件可知:物体此时所受合外力大小等于F1,方向与F1方向相反。若物体原来静止,物体一定做与F1相反方向的匀加速直线运动。若物体原来做匀速运动,若F1与初速度方向在同一条直线上,则物体可能做匀加速直线运动或匀减速直线运动,故A、B正确。若F1与初速度不在同一直线上,则物体做曲线运动,且其加速度为恒定值,故物体做匀变速曲线运动,故C正确,D错误。正确答案为:A、B、C。例2、图1中实线是一簇未标明方向的由点电荷产生的电场线,虚线是某一带电粒子通过该电场区域时的运动轨迹,a、b是轨迹上的两点。若带电粒子在运动中只受电场力作用,根据此图可作出正确判断的是()A.带电粒子所带电荷的符号;B.带电粒子在a、b两点的受力方向;C.带电粒子在a、b两点的速度何处较大;D.带电粒子在a、b两点的电势能何处较大。分析与解:由于不清楚电场线的方向,所以在只知道粒子在a、b间受力情况是不可能判断其带电情况的。而根据带电粒子做曲线运动的条件可判定,在a、b两点所受到的电场力的方向都应在电场线上并大致向左。若粒子在电场中从a向b点运动,故在不间断的电场力作用下,动能不断减小,电势能不断增大。故选项B、C、D正确。ab图1问题2:会根据运动的合成与分解求解船过河问题。例3、一条宽度为L的河流,水流速度为Vs,已知船在静水中的速度为Vc,那么:(1)怎样渡河时间最短?(2)若VcVs,怎样渡河位移最小?(3)若VcVs,怎样注河船漂下的距离最短?分析与解:(1)如图2甲所示,设船上头斜向上游与河岸成任意角θ,这时船速在垂直于河岸方向的速度分量V1=Vcsinθ,渡河所需时间为:sincVLt.可以看出:L、Vc一定时,t随sinθ增大而减小;当θ=900时,sinθ=1,所以,当船头与河岸垂直时,渡河时间最短,cVLtmin.(2)如图2乙所示,渡河的最小位移即河的宽度。为了使渡河位移等于L,必须使船的合速度V的方向与河岸垂直。这是船头应指向河的上游,并与河岸成一定的角度θ。根据三角函数关系有:Vccosθ─Vs=0。所以θ=arccosVs/Vc,因为0≤cosθ≤1,所以只有在VcVs时,船才有可能垂直于河岸横渡。(3)如果水流速度大于船上在静水中的航行速度,则不论船的航向如何,总是被水冲向下游。怎样才能使漂下的距离最短呢?如图2丙所示,设船头Vc与河岸成θ角,合速度V与河岸成α角。可以看出:α角越大,船漂下的距离x越短,那么,在什么条件下α角最大呢?以Vs的矢尖为圆心,以Vc为半径画圆,当V与圆相切时,α角最大,根据cosθ=Vc/Vs,船头与河岸的夹角应为:θ=arccosVc/Vs.船漂的最短距离为:sin)cos(minccsVLVVx.此时渡河的最短位移为:LVVLscscos.问题3:会根据运动的合成与分解求解绳联物体的速度问题。对于绳联问题,由于绳的弹力总是沿着绳的方向,所以当绳不可伸长时,绳联物体的速度在绳的方向上的投影相等。求绳联物体的速度关联问题时,首先要明确绳联物体的速度,然后将两物体的速度分别沿绳的方向和垂直于绳的方向进行分解,令两物体沿绳方向的速度相等即可求出。例4、如图3所示,汽车甲以速度v1拉汽车乙前进,乙的速度为v2,甲、乙都在水平面上运动,求v1∶v2分析与解:如图4所示,甲、乙沿绳的速度分别为v1和v2cosα,两者应该相等,所以有v1∶v2=cosα∶1例5、如图5所示,杆OA长为R,可绕过O点的水平轴在竖直平面内转动,其端点A系着一跨过定滑轮B、C的不可伸长的轻绳,绳的另一端系一物块M。滑轮的半径可忽略,B在O的正上方,OB之间的距离为H。某一时刻,当绳的BA段与OB之间的夹角为α时,杆的角速度为ω,求此时物块M的速率Vm.分析与解:杆的端点A点绕O点作圆周运动,其速度VA的方向与杆OA垂直,在所考察时其速度大小为:VA=ωR对于速度VA作如图6所示的正交分解,即沿绳BA方向和垂直于BA方向进行分解,沿绳BA方向的分量就是物块M的速率VM,因为物块只有沿绳方向的速度,所以VM=VAcosβ由正弦定理知,RHsin)2sin(由以上各式得VM=ωHsinα.问题4:会根据运动的合成与分解求解面接触物体的速度问题。求相互接触物体的速度关联问题时,首先要明确两接触物体甲乙αv1v2图3v1甲乙αv1v2图4BMCAROω图5αMCAROω图6αVAβBRθOPV0图7V1的速度,分析弹力的方向,然后将两物体的速度分别沿弹力的方向和垂直于弹力的方向进行分解,令两物体沿弹力方向的速度相等即可求出。例6、一个半径为R的半圆柱体沿水平方向向右以速度V0匀速运动。在半圆柱体上搁置一根竖直杆,此杆只能沿竖直方向运动,如图7所示。当杆与半圆柱体接触点P与柱心的连线与竖直方向的夹角为θ,求竖直杆运动的速度。分析与解:设竖直杆运动的速度为V1,方向竖直向上,由于弹力方向沿OP方向,所以V0、V1在OP方向的投影相等,即有cossin10VV,解得V1=V0.tgθ.问题5:会根据运动的合成与分解求解平抛物体的运动问题。例7、如图8在倾角为θ的斜面顶端A处以速度V0水平抛出一小球,落在斜面上的某一点B处,设空气阻力不计,求(1)小球从A运动到B处所需的时间;(2)从抛出开始计时,经过多长时间小球离斜面的距离达到最大?分析与解:(1)小球做平抛运动,同时受到斜面体的限制,设从小球从A运动到B处所需的时间为t,则:水平位移为x=V0t竖直位移为y=221gt由数学关系得到:gVttVgttan2,tan)(21002(2)从抛出开始计时,经过t1时间小球离斜面的距离达到最大,当小球的速度与斜面平行时,小球离斜面的距离达到最大。因Vy1=gt1=V0tanθ,所以gVttan01。例8、如图9所示,一高度为h=0.2m的水平面在A点处与一倾角为θ=30°的斜面连接,一小球以V0=5m/s的速度在平面上向右运动。求小球从A点运动到地面所需的时间(平面与斜面均光滑,取g=10m/s2)。某同学对此题的解法为:小球沿斜面运动,则,sin21sin20tgtVh由此可求得落地的时间t。问:你同意上述解法吗?若同意,求出所需的时间;若不同意,则说明理由并求出你认为正确的结果。分析与解:不同意。小球应在A点离开平面做平抛运动,而不是沿斜面下滑。θ图8BAV0V0Vy1θBAh图9A正确做法为:落地点与A点的水平距离)(1102.025200mghVtVs斜面底宽)(35.032.0mhctgl因为ls,所以小球离开A点后不会落到斜面,因此落地时间即为平抛运动时间。∴)(2.0102.022sght问题6:会根据匀速圆周运动的特点分析求解皮带传动和摩擦传动问题。凡是直接用皮带传动(包括链条传动、摩擦传动)的两个轮子,两轮边缘上各点的线速度大小相等;凡是同一个轮轴上(各个轮都绕同一根轴同步转动)的各点角速度相等(轴上的点除外)。例9、如图10所示装置中,三个轮的半径分别为r、2r、4r,b点到圆心的距离为r,求图中a、b、c、d各点的线速度之比、角速度之比、加速度之比。分析与解:因va=vc,而vb∶vc∶vd=1∶2∶4,所以va∶vb∶vc∶vd=2∶1∶2∶4;ωa∶ωb=2∶1,而ωb=ωc=ωd,所以ωa∶ωb∶ωc∶ωd=2∶1∶1∶1;再利用a=vω,可得aa∶ab∶ac∶ad=4∶1∶2∶4例10、如图11所示,一种向自行车车灯供电的小发电机的上端有一半径r0=1.0cm的摩擦小轮,小轮与自行车车轮的边缘接触。当车轮转动时,因摩擦而带动小轮转动,从而为发电机提供动力。自行车车轮的半径R1=35cm,小齿轮的半径R2=4.0cm,大齿轮的半径R3=10.0cm。求大齿轮的转速n1和摩擦小轮的转速n2之比。(假定摩擦小轮与自行车轮之间无相对滑动)分析与解:大小齿轮间、摩擦小轮和车轮之间和皮带传动原理相同,两轮边缘各点的线速度大小相等,由v=2πnr可知转速n和半径r成反比;小齿轮和车轮同轴转动,两轮上各点的转速相同。由这三次传动可以找出大齿轮和摩擦小轮间的转速之比n1∶n2=2∶175。abcd图10大齿轮小齿轮车轮小发电机摩擦小轮链条图11

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功