第五章钢的热处理改善钢的性能,主要有两条途径:一是合金化,这是下几章研究的内容;二是热处理,这是本章要研究的内容。第一节概述第二节钢在加热时的转变第三节钢在冷却时的转变第四节钢的退火与正火第五节钢的淬火第六节钢的淬透性第七节钢的回火第八节钢的表面淬火第九节钢的化学热处理第一节概述1、热处理:是指将钢在固态下加热、保温和冷却,以改变钢的组织结构,获得所需要性能的一种工艺。为简明表示热处理的基本工艺过程,通常用温度—时间坐标绘出热处理工艺曲线。热处理是一种重要的加工工艺,在制造业被广泛应用。在机床制造中约60~70%的零件要经过热处理。在汽车、拖拉机制造业中需热处理的零件达70~80%。模具、滚动轴承100%需经过热处理。总之,重要零件都需适当热处理后才能使用。滚动轴承2、热处理特点:热处理区别于其他加工工艺如铸造、压力加工等的特点是只通过改变工件的组织来改变性能,而不改变其形状。铸造轧制3、热处理适用范围:只适用于固态下发生相变的材料,不发生固态相变的材料不能用热处理强化。4、热处理分类热处理原理:描述热处理时钢中组织转变的规律称热处理原理。热处理工艺:根据热处理原理制定的温度、时间、介质等参数称热处理工艺。(a)940淬火+220回火(板条M回+A‘少)(b)(c)(d)940淬火+820、780、750淬火(板条M+条状F+A’少)(e)940淬火+780淬火+220回火(板条M回+条状F+A‘少)(f)780淬火+220回火(板条M回+块状F)20CrMnTi钢不同热处理工艺的显微组织依加热、冷却方式等不同,将热处理工艺分类如下:表面淬火—感应加热、火焰加热、其他热处理普通热处理表面热处理热处理退火正火淬火回火真空热处理形变热处理激光热处理控制气氛热处理电接触加热等化学热处理—渗碳、氮化、碳氮共渗、渗其他元素等5、预备热处理与最终热处理预备热处理—为随后的加工(冷拔、冲压、切削)或进一步热处理作准备的热处理。最终热处理—赋予工件所要求的使用性能的热处理。预备热处理最终热处理W18Cr4V钢热处理工艺曲线时间冷却时的实际转变温度分别用Ar1、Ar3、Arcm表示。因加热冷却速度直接影响转变温度,因此一般手册中的数据是以30-50℃/h的速度加热或冷却时测得的。6、临界温度与实际转变温度铁碳相图中PSK、GS、ES线分别用A1、A3、Acm表示。实际加热或冷却时存在着过冷或过热现象,因此将钢加热时的实际转变温度分别用Ac1、Ac3、Accm表示;第二节钢在加热时的转变加热是热处理的第一道工序。加热分两种:一种是在A1以下加热,不发生相变;另一种是在临界点以上加热,以获得均匀的奥氏体组织,称奥氏体化。钢坯加热一、奥氏体的形成过程奥氏体化也是形核和长大的过程,分为四步。现以共析钢为例说明:第一步奥氏体晶核形成:首先在与Fe3C相界形核.第二步奥氏体晶核长大:晶核通过碳原子的扩散向和Fe3C方向长大。第三步残余Fe3C溶解:铁素体的成分、结构更接近于奥氏体,因而先消失。残余的Fe3C随保温时间延长继续溶解直至消失。第四步奥氏体成分均匀化:Fe3C溶解后,其所在部位碳含量仍很高。通过长时间保温使奥氏体成分趋于均匀。温度,℃共析钢奥氏体化曲线(875℃退火)共析钢奥氏体化过程亚共析钢和过共析钢的奥氏体化过程与共析钢基本相同。但由于先共析或二次Fe3C的存在,要获得全部奥氏体组织,必须相应加热到Ac3或Accm以上。二、奥氏体晶粒长大及其影响因素1、奥氏体晶粒长大奥氏体化刚结束时的晶粒度称起始晶粒度,此时晶粒细小均匀。随加热温度升高或保温时间延长,奥氏体晶粒将进一步长大,这也是一个自发的过程。奥氏体晶粒长大过程与再结晶晶粒长大过程相同。温来判断。晶粒度为1-4级的是本质粗晶粒钢,5-8级的是本质细晶粒钢。前者晶粒长大倾向大,后者晶粒长大倾向小。在给定温度下奥氏体的晶粒度称实际晶粒度。加热时奥氏体晶粒的长大倾向称本质晶粒度。通常将钢加热到94010℃奥氏体化后,设法把奥氏体晶粒保留到室本质粗晶粒钢本质细晶粒钢930~950℃温度,℃Ac1钢的本质粗晶粒度示意图2、影响奥氏体晶粒长大的因素⑴加热温度和保温时间:加热温度高、保温时间长,晶粒粗大。⑵加热速度:速度越快,过热度越大,形核率越高,晶粒越细。⑶合金元素:阻碍奥氏体晶粒长大的元素:Ti、V、Nb、Ta、Zr、W、Mo、Cr、Al等碳化物和氮化物形成元素。析出颗粒对黄铜晶界的钉扎Nb/%奥氏体晶粒尺寸/μmNb、Ti对奥氏体晶粒的影响促进奥氏体晶粒长大的元素:Mn、P、C、N。⑷原始组织:平衡状态的组织有利于获得细晶粒。奥氏体晶粒粗大,冷却后的组织也粗大,降低钢的常温力学性能,尤其是塑性。因此加热得到细而均匀的奥氏体晶粒是热处理的关键问题之一。珠光体奥氏体第三节钢在冷却时的转变冷却是热处理更重要的工序。一、过冷奥氏体的转变产物及转变过程处于临界点A1以下的奥氏体称过冷奥氏体。过冷奥氏体是非稳定组织,迟早要发生转变。随过冷度不同,过冷奥氏体将发生珠光体转变、贝氏体转变和马氏体转变三种类型转变。现以共析钢为例说明:㈠珠光体转变1、珠光体的组织形态及性能过冷奥氏体在A1到550℃间将转变为珠光体类型组织,它是铁素体与渗碳体片层相间的机珠光体索氏体托氏体械混合物,根据片层厚薄不同,又细分为珠光体、索氏体和托氏体.⑴珠光体:形成温度为A1-650℃,片层较厚,500倍光镜下可辨,用符号P表示.光镜下形貌电镜下形貌三维珠光体如同放在水中的包心菜⑵索氏体形成温度为650~600℃,片层较薄.800-1000倍光镜下可辨,用符号S表示。电镜形貌光镜形貌⑶托氏体形成温度为600-550℃,片层极薄,电镜下可辨,用符号T表示。电镜形貌光镜形貌珠光体、索氏体、屈氏体三种组织无本质区别,只是形态上的粗细之分,因此其界限也是相对的.片间距bHRC片间距越小,钢的强度、硬度越高,而塑性和韧性略有改善.2、珠光体转变过程珠光体转变也是形核和长大的过程。渗碳体晶核首先在奥氏体晶界上形成,在长大过程中,其两侧奥氏体的含碳量下降,促进了铁素体形核。两者相间形核并长大,形成一个珠光体团.珠光体转变是扩散型转变。Fe3C珠光体转变珠光体转变过程奥氏体5.8秒19.2秒22.0秒24.2秒66.7秒珠光体转变过程观察㈡贝氏体转变1、贝氏体的组织形态及性能过冷奥氏体在550℃-230℃(Ms)间将转变为贝氏体类型组织,贝氏体用符号B表示。根据其组织形态不同,贝氏体又分为上贝氏体(B上)和下贝氏体(B下)。上贝氏体下贝氏体⑴上贝氏体形成温度为550-350℃。在光镜下呈羽毛状。在电镜下为不连续棒状的渗碳体分布于自奥氏体晶界向晶内平行生长的铁素体条之间。光镜下电镜下⑵下贝氏体形成温度为350-230℃(Ms)在光镜下呈竹叶状。光镜下电镜下在电镜下为细片状碳化物分布于铁素体针内,并与铁素体针长轴方向呈55-60º角。上贝氏体强度与塑性都较低,无实用价值。下贝氏体除了强度、硬度较高外,塑性、韧性也较好,即具有良好的综合力学性能,是生产上常用强化组织之一。共析钢的强度硬度与等温相变温度的关系2、贝氏体转变过程贝氏体转变也是形核和长大的过程。发生贝氏体转变时,首先在奥氏体中的贫碳区形成铁素体晶核,其含碳量介于奥氏体与平衡铁素体之间,为过饱和铁素体。当转变温度较高(550-350℃)时,条片状铁素体从奥氏体晶界向晶内平行生长,随铁素体条伸长和变宽,其碳原子向条间奥氏体富集,最后在铁素体条间析出Fe3C短棒,奥氏体消失,形成B上。上贝氏体转变过程上贝氏体转变过程观察贝氏体转变属半扩散型转变,即只有碳原子扩散而铁原子不扩散,晶格类型改变是通过切变实现的。当转变温度较低(350-230℃)时,铁素体在晶界或晶内某些晶面上长成针状,由于碳原子扩散能力低,其迁移不能逾越铁素体片的范围,碳在铁素体的一定晶面上以断续碳化物小片的形式析出。下贝氏体转变㈢马氏体转变当奥氏体过冷到230℃(Ms)以下将转变为马氏体类型组织。马氏体转变是强化钢的重要途径之一。1、马氏体的晶体结构碳在-Fe中的过饱和固溶体称马氏体,用M表示。马氏体组织马氏体转变时,奥氏体中的碳全部保留到马氏体中。马氏体具有体心正方晶格(a=b≠c)轴比c/a称马氏体的正方度。C%越高,正方度越大,正方畸变越严重。当<0.25%C时,c/a=1,此时马氏体为体心立方晶格。2、马氏体的形态马氏体的形态分板条和针状两类。⑴板条马氏体立体形态为细长的扁棒状在光镜下板条马氏体为一束束的细条组织。光镜下电镜下每束内条与条之间尺寸大致相同并呈平行排列,一个奥氏体晶粒内可形成几个取向不同的马氏体束。在电镜下,板条内的亚结构主要是高密度的位错,=1012/cm2,又称位错马氏体。SEMTEM⑵针状马氏体立体形态为双凸透镜形的片状。显微组织为针状。在电镜下,亚结构主要是孪晶,又称孪晶马氏体。电镜下电镜下光镜下⑶马氏体的形态主要取决于其含碳量C%小于0.2%时,组织几乎全部是板条马氏体。C%大于1.0%时,几乎全部是针状马氏体.C%在0.2~1.0%之间为板条与针状的混合组织。马氏体形态与含碳量的关系0.45%C0.2%C1..2%C板条马氏体量C,%先形成的马氏体片横贯整个奥氏体晶粒,但不能穿过晶界和孪晶界。后形成的马氏体片不能穿过先形成的马氏体片,所以越是后形成的马氏体片越细小.原始奥氏体晶粒细,转变后的马氏体片也细。当最大马氏体片细到光镜下无法分辨时,该马氏体称隐晶马氏体.45钢正常淬火组织奥氏体+马氏体马氏体转变观察过冷奥氏体转变产物(共析钢)转变类型转变产物形成温度,℃转变机制显微组织特征HRC获得工艺珠光体PA1~650扩散型粗片状,F、Fe3C相间分布5-20退火S650~600细片状,F、Fe3C相间分布20-30正火T600~550极细片状,F、Fe3C相间分布30-40等温处理贝氏体B上550~350半扩散型羽毛状,短棒状Fe3C分布于过饱和F条之间40-50等温处理B下350~MS竹叶状,细片状Fe3C分布于过饱和F针上50-60等温淬火马氏体M针MS~Mf无扩散型针状60-65淬火M*板条MS~Mf板条状50淬火3、马氏体的性能高硬度是马氏体性能的主要特点。马氏体的硬度主要取决于其含碳量。含碳量增加,其硬度增加。当含碳量大于0.4%时,其硬度趋于平缓。合金元素对马氏体硬度的影响不大。马氏体硬度与含碳量的关系马氏体强化的主要原因是过饱和碳引起的固溶强化。此外,马氏体转变产生的组织细化也有强化作用。马氏体的塑性和韧性主要取决于其亚结构形式。针状马氏体脆性大,板条马氏体的塑性和韧性较好。针状马氏体板条马氏体马氏体的透射电镜形貌4、马氏体转变的特点马氏体转变也是形核和长大过程。其主要特点是:⑴无扩散性铁和碳原子都不扩散,因而马氏体的含碳量与奥氏体的含碳量相同。⑵共格切变性由于无扩散,晶格转变是以切变机制进行的。使切变部分的形状和体积发生变化,引起相邻奥氏体随之变形,在预先抛光的表面上产生浮凸现象。马氏体转变切变示意图马氏体转变产生的表面浮凸⑶降温形成马氏体转变开始的温度称上马氏体点,用Ms表示。马氏体转变终了的温度称下马氏体点,用Mf表示。只要温度达到Ms以下即发生马氏体转变。在Ms以下,随温度下降,转变量增加,冷却中断,转变停止。MfMsM(90%)M(50%)⑷高速长大马氏体形成速度极快,瞬间形核,瞬间长大。当一片马氏体形成时,可能因撞击作用使已形成的马氏体产生裂纹。⑸转变不完全’即使冷却到Mf点,也不可能获得100%的马氏体,总有部分奥氏体未能转变而残留下来,称残余奥氏体,用A’或’表示。Ms、Mf与冷速无关,主要取决于奥氏体中的合金元素含量(包括碳含量)。马氏体转变后,A’量随含碳量