2011年南通中考数学试题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2011年江苏省南通市中考数学试题一、选择题(本大题共10小题,每小题3分,满分30分)1.如果60m表示“向北走60m”,那么“向南走40m”可以表示为【】A.-20mB.-40mC.20mD.40m2.下面的图形中,既是轴对称图形又是中心对称图形的是【】3.计算的结果是【】A.±3B.3C.±3D.34.下列长度的三条线段,不能组成三角形的是【】A.3,8,4B.4,9,6C.15,20,8D.9,15,85.如图,AB∥CD,∠DCE=80°,则∠BEF=【】A.120°B.110°C.100°D.80°6.下列水平放置的几何体中,俯视图是矩形的为【】7.若3是关于方程x2-5x+c=的一个根,则这个方程的另一个根是【】A.-2B.2C.-5D.58.如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于【】A.8B.4C.10D.59.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是【】A.甲的速度是4km/hB.乙的速度是10km/hC.乙比甲晚出发1hD.甲比乙晚到B地3h10.设m>n>0,m2+n2=4mn,则mn(m2-n2)=【】A.2B.C.D.3二、填空题(本大题共8小题,每小题3分,满分24分)11.已知=20°,则的余角等于.12.计算:-=.13.函数y=x-1(x+2)中,自变量x的取值范围是.14.七位女生的体重(单位:kg)分别为36、42、38、42、35、45、40,则这七位女生的体重的中位数为kg.15.如图,在矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=CE.若将纸片沿AE折叠,点B恰好与AC上的点B1重合,则AC=cm.16.分解因式:3m(2x―y)2―3mn2=.17.如图,为了测量河宽AB(假设河的两岸平行),测得∠ACB=30°,∠ADB=60°,CD=60m,则河宽AB为m(结果保留根号).18.如图,三个半圆依次相外切,它们的圆心都在x轴上,并与直线y=3(3)x相切.设三个半圆的半径依次为r1、r2、r3,则当r1=1时,r3=.三、解答题(本大题共10小题,满分96分)19.(10分)(1)计算:22+(-1)4+(-2)0-|-3|;(2)先化简,再求值:(4ab3-8a2b2)÷4ab+(2a+b)(2a-b),其中a=2,b=1.20.(8分)求不等式组x-1(3x-6≥x-4)的解集,并写出它的整数解.21.(9分)某中学学生为了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调查的结果绘制成如下的两幅不完整的统计图.请根据图中提供的信息,解答下面的问题:(1)参加调查的学生共有人,在扇形图中,表示“其他球类”的扇形的圆心角为度;(2)将条形图补充完整;(3)若该校有2000名学生,则估计喜欢“篮球”的学生共有人.22.(8分)如图,AM切⊙O于点A,BD⊥AM于点D,BD交⊙O于点C,OC平分∠AOB.求∠B的度数.23.(8分)在社区全民健身活动中,父子俩参加跳绳比赛.相同时间内父亲跳180个,儿子跳210个.已知儿子每分钟比父亲多跳20个,父亲、儿子每分钟各跳多少个?24.(8分)比较正五边形与正六边形,可以发现它们的相同点和不同点.例如:它们的一个相同点:正五边形的各边相等,正六边形的各边也相等.它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形.请你再写出它们的两个相同点和不同点:相同点:①;②.不同点:①;②.25.(9分)光明中学十分重视中学生的用眼卫生,并定期进行视力检测.某次检测设有A、B两处检测点,甲、乙、丙三名学生各自随机选择其中的一处检测视力.(1)求甲、乙、丙三名学生在同一处检测视力的概率;(2)求甲、乙、丙三名学生中至少有两人在B处检测视力的概率.26.(10分)如图1,O为正方形ABCD的中心,分别延长OA、OD到点F、E,使OF=2OA,OE=2OD,连接EF.将△EOF绕点O逆时针旋转角得到△E1OF1(如图2).(1)探究AE1与BF1的数量关系,并给予证明;(2)当=30°时,求证:△AOE1为直角三角形.27.(12分)已知A(1,0)、B(0,-1)、C(-1,2)、D(2,-1)、E(4,2)五个点,抛物线y=a(x-1)2+k(a>0)经过其中的三个点.(1)求证:C、E两点不可能同时在抛物线y=a(x-1)2+k(a>0)上;(2)点A在抛物线y=a(x-1)2+k(a>0)上吗?为什么?(3)求a和k的值.28.如图,已知直线l经过点A(1,0),与双曲线y=x(m)(x>0)交于点B(2,1).过点P(p,p-1)(p>1)作x轴的平行线分别交双曲线y=x(m)(x>0)和y=-x(m)(x<0)于点M、N.(1)求m的值和直线l的解析式;(2)若点P在直线y=2上,求证:△PMB∽△PNA;(3)是否存在实数p,使得S△AMN=4S△AMP?若存在,请求出所有满足条件的p的值;若不存在,请说明理由.

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功