2011年四川省内江市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、下列四个实数中,比1小的数是()A、2B、0C、1D、22、如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()A、32°B、58°C、68°D、60°3、某红外线遥控器发出的红外线波长为0.00000094m,用科学记数法表示这个数是()A、79.410mB、79.410mC、89.410mD、89.410m4、在下列几何图形中,一定是轴对称图形的有()A、1个B、2个C、3个D、4个5、为了解某市参加中考的32000名学生的体质情况,抽查了其中1600名学生的体重进行统计分析.下面叙述正确的是()A、32000名学生是总体B、1600名学生的体重是总体的一个样本C、每名学生是总体的一个个体D、以上调査是普查6、下列多边形中,不能够单独铺满地面的是()A、正三角形B、正方形C、正五边形D、正六边形7、某中学数学兴趣小组12名成员的年龄悄况如下:年龄(岁)1213141516人数14322则这个小组成员年龄的平均数和中位数分别是()A、15,16B、13,15C、13,14D、14,148、由一些大小相同的小正方体搭成的几何体的俯视图如右图所示,其正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是()9、如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径0C为2,则弦BC的长为()A、1B、3C、2D、2310、小高从家骑自行车去学校上学,先走上坡路到达点A,再走下坡路到达点B,最后走平路到达学校,所用的时间与路程的关系如图所示.放学后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,那么他从学校到家需要的时间是()A、14分钟B、17分钟C、18分钟D、20分钟11、如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=4,CE=43,则△ABC的面积为()A、83B、15C、93D、12312、如图.在直角坐标系中,矩形ABC0的边OA在x轴上,边0C在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为()A、412()55,B、213()55,C、113()25,D、312()55,二、填空题{本大题共4小题,每小题5分,共20分.请将最后答案直接写在题中横线上.)13、“WelcomctoSeniorHighSchool.”(欢迎进入高中),在这段句子的所有英文字母中,字母O出现的频率是________。14、如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120°.则圆锥的母线是________。15、如果分式23273xx的值为0,则x的值应为________。16、如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足________条件时,四边形EFGH是菱形.三、解答题(本大题共5小题,共44分)17、计算:03tan30(2011)812.18、如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点.将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC.试猜想线段BE和EC的数量及位置关系,并证明你的猜想.19、小英和小明姐弟二人准备一起去观看端午节龙舟赛.但因家中临时有事,必须留下一人在家,于是姐弟二人采用游戏的方式来确定谁去看龙舟赛.游戏规则是:在不透明的口袋中分别放入2个白色和1个黄色的乒乓球,它们除颜色外其余都相同.游戏时先由小英从口袋中任意摸出1个乒乓球记下颜色后放回并摇匀,再由小明从口袋中摸出1个乒乓球,记下颜色.如果姐弟二人摸到的乒乓球颜色相同.则小英赢,否则小明赢.(1)请用树状图或列表的方法表示游戏中所有可能出现的结果.(2)这个游戏对游戏双方公平吗?请说明理由.20、放风筝是大家喜爱的一种运动.星期天的上午小明在大洲广场上放风筝.如图他在A处时不小心让风筝挂在了一棵树的树梢上,风筝固定在了D处.此时风筝线AD与水平线的夹角为30°.为了便于观察.小明迅速向前边移动边收线到达了离A处7米的B处,此时风筝线BD与水平线的夹角为45°.已知点A、B、C在冋一条直线上,∠ACD=90°.请你求出小明此吋所收回的风筝线的长度是多少米?(本题中风筝线均视为线段,2≈1.414,3≈1.732.最后结果精确到1米)21、如图,正比例函数11ykx与反比例函数22kyx相交于A、B点.已知点A的坐标为A(4,n),BD⊥x轴于点D,且4BDOS.过点A的一次函数33ykxb与反比例函数的图象交于另一点C,与x轴交于点E(5,0).(1)求正比例函数1y、反比例函数2y和一次函数3y的解析式;(2)结合图象,求出当231kkxbkxx时x的取值范围.四、填空题(本大题共4小题,每小题6分,共24分.请将最简答案直接填在题中横线上.)22、若201120121m,则54322011mmm的值是_________23、如图,在△ABC中,点D、E分别是边AB、AC的中点,DF过EC的中点G并与BC的延长线交于点F,BE与DE交于点O.若△ADE的面积为S,则四边形B0GC的面积=_________24、已知263(5)36(3)mnmmn,则mn=25、在直角坐标系中,正方形1111ABCO、2221ABCC、…、nnnn-1ABCC按如图所示的方式放置,其中点123AAA、、、…、nA均在一次函数ykxb的图象上,点123C、C、C、…、nC均在x轴上.若点1B的坐标为(1,1),点2B的坐标为(3,2),则点nA的坐标为_________五、解答题(本大题共3小题,每小题12分,共36分.解答时必须写ii必要的文字说明、证明过程或推演步骤)26、同学们,我们曾经研究过n×n的正方形网格,得到了网格中正方形的总数的表达式为2222123...n.但n为100时,应如何计算正方形的具体个数呢?下面我们就一起来探究并解决这个问题.首先,通过探究我们已经知道1011223...(1)(1)(1)3nnnnn时,我们可以这样做:(1)观察并猜想:2212=(1+0)×1+(1+1)×2=l+0×1+2+1×2=(1+2)+(0×1+1×2)222123=(1+0)×1+(1+1)×2+(l+2)×3=1+0×1+2+1×2+3+2×3=(1+2+3)+(0×1+1×2+2×3)22221234=(1+0)×1+(1+1)×2+(l+2)×3+___________=1+0×1+2+1×2+3+2×3+___________=(1+2+3+4)+(___________)…(2)归纳结论:2222123...n=(1+0)×1+(1+1)×2+(1+2)×3+…[1+(n-l)]n=1+0×1+2+1×2+3+2×3+…+n+(n-1)×n=(___________)+[___________]=___________+___________=16×___________(3)实践应用:通过以上探究过程,我们就可以算出当n为100时,正方形网格中正方形的总个数是_________。27、某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?28、如图抛物线213yxmxn与x轴交于A、B两点,与y轴交于点C(0.1).且对称抽x=l.(1)求出抛物线的解析式及A、B两点的坐标;(2)在x轴下方的抛物线上是否存在点D,使四边形ABDC的面积为3.若存在,求出点D的坐标;若不存在.说明理由(使用图1);(3)点Q在y轴上,点P在抛物线上,要使Q、P、A、B为顶点的四边形是平行四边形,请求出所有满足条件的点P的坐标(使用图2).2011年内江中考数学答案一、选择题题号123456789101112答案ABACBCDBDDCA二、填空题13.0.214.3015.316.AB=CD三、解答题17.解:原式=×-1+2+(1-),=1-1+2+1-,=+1.18.数量关系为:BE=EC,位置关系是:BE⊥EC.证明:∵△AED是直角三角形,∠AED=90°,且有一个锐角是45°,∴∠EAD=∠EDA=45°,∴AE=DE,∵∠BAC=90°,∴∠EAB=∠EAD+∠BAC=90°+45°=135°,∠EDC=∠ADC-∠EDA=180°-45°=135°,∴∠EAB=∠EDC,∵D是AC的中点,∴AD=AB,∵AC=2AB,∴AB=DC,∴△EAB≌△EDC,∴EB=EC,且∠AEB=∠AED=90°,∴∠DEC+∠BED=∠AED=∠BED=90°,∴BE⊥ED.19.解:(1)(2)根据树状图可知,P(小英赢)=,P(小明赢)=,P(小英赢)>P(小明赢),所以该游戏不公平.20.解:设CD为x米.∵∠ACD=90°,∴在直角△ADC中,∠DAC=30°,AC=CD•cos30°=x,AD=2x,在直角△BCD中,∠DBC=45°,BC=CD=x,BD==x,∵AC-BC=AB=7米,∴x-x=7,又∵≈1.4,≈1.7,∴x=10米,则小明此时所收回的风筝的长度为:AD-BD=2x-x=6米.21.解:(1)∵S△BDO=4.∴k2=2×4=8,∴反比例函数解析式;y2=,∵点A(4,n)在反比例函数图象上,∴4n=8,n=2,∴A点坐标是(4,2),∵A点(4,2)在正比例函数y1=k1x图象上,∴2=k1•4,k1=,∴正比例函数解析式是:y1=x,∵一次函数y3=k3x+b过点A(4,2),E(5,0),∴,解得:,∴一次函数解析式为:y3=-2x+10;(2)由-2x+10=解得另一交点C的坐标是(1,8),点A(4,2)和点D关于原点中心对称,∴D(-4,-2),∴由观察可得x的取值范围是:x<-4,或1<x<4.四、填空题22.023.74S24.225.11(212)nn,五、解答题26.解:(1)观察并猜想:(1+3)×4;4+3×4;0×1+1×2+2×3+3×4;(2)归纳结论:1+2+3+…+n;0×1+1×2+2×3+…+(n-1)n;n(n+1);n(n+1)(n-1);n(n+1)(2n+1);(3)实践应用:338350.27.解:(1)设每台电脑机箱、液晶显示器的进价各是x,y元,根据题意得:,解得:,答:每台电脑机箱、液晶显示器的进价各是60元,800元;(2)设该经销商购进电脑机箱m台,购进液晶显示器(50-m)台,根据题意得:,解得:24≤m≤26,因为m要为整数,所以m可以取24、25、26,从而得出有三种进货方式:①电脑箱:24台,液晶显示器:26台,②电脑箱:25台,液晶显示器:25台;③电脑箱:26台,液晶显示器:24台.∴方案一的利润:24×10+26×160=4400,方案二的利润:25×10+25×160=4250,方案三的利润:26×10+24×160=4100,∴方案一的利润最大为4400元.28.解:(1)∵抛物线与y轴交于点C(0.-1).且对称抽x=l.∴,解得:,∴抛物线解析式为y=x2-x-1,令x2-x-1=0,得:x1=