第4章动力电池系统4.1动力电池简介4.2锂离子动力电池4.3其他电池4.4动力电池管理系统4.5动力电池组的使用寿命4.6动力电池的梯次利用与回收4.1动力电池简介4.1.1动力电池的基本结构4.1.2动力电池的基本参数4.1.3动力电池分类4.1.1动力电池的基本结构•电池是一种把化学反应所释放的能量直接转变成直流电能的装置。要实现化学能转变成电能的过程,必须满足如下条件:•⑴必须把化学反应中失去电子的氧化过程(在负极进行),得到电子的还原过程(在正极进行),分别在两个区域进行。•⑵两电极间必须具有离子导电性的物质。•⑶化学变化过程中电子的传递必须经过外线路。•为满足构成电池的条件,电池需包含以下基本组成部分:正极活性物质、负极活性物质、电解质、隔膜、外壳以及导电栅、汇流体、端子、安全阀等零件。电池基本结构如图4-1所示。图4-1电池的基本结构4.1.2动力电池的基本参数(1)端电压和电动势(2)容量(3)内阻(4)能量与能量密度(5)功率与功率密度(6)荷电状态(7)放电深度(8)循环使用寿命(Cycle(9)自放电率(10)输出效率(11)抗滥用能力(12)成本(13)放电制度4.1.2动力电池的基本参数⑴端电压和电动势端电压:动力电池正极和负极之间的电位差。动力电池在没有负载情况下的端电压叫开路电压。动力电池接上负载后处于放电状态下的电压称为负载电压,又称为工作电压。电池充放电结束时的电压称为终止电压,分为充电终止电压和放电终止电压。图4-2所示为电池的充放电曲线,由图可知电池的充放电结束时都有一个电压极限值,充电时的电压极限值就是充电终止电压;放电时的电压极限值就是放电终止电压。电动势(E):组成电池的两个电极的平衡电极电位之差。图4-2电池充放电电压变化曲线(2)容量容量是指电池在一定的放电条件下所能放出的电量,用符号C表示,单位常用或表示。理论容量:假定电池中的活性物质全部参加电池的成流反应所能提供的电量。理论容量可根据电池反应式中电极活性物质的用量,按法拉第定律计算的活性物质的电化学当量精确求出。法拉第定律指出:电流通过电解质溶液时,在电极上发生化学反应的物质的量与通过的电量成正比。数学式表达为理论容量是电池容量的最大极限值,电池实际放出的容量只是理论容量的一部分计算公式。额定容量:也叫标称容量,是指按国家或有关部门规定的标准,保证电池在一定的放电条件(如温度、放电率、终止电压等)下应该放出的最低限度的容量。额定容量是制造厂标明的安时容量,是验收电池质量的重要技术指标。实际容量(C):在实际应用工作情况下放电,电池实际放出的电量。充满电的电池在一定条件下所能输出的电量,它等于放电电流与放电时间的积分。(3)内阻•电流通过电池内部时受到阻力,使电池的工作电压降低,该阻力称为电池内阻。由于电池内阻的作用,电池放电时端电压低于电动势和开路电压。充电时充电的端电压高于电动势和开路电压。电池内阻是化学电源的一个极为重要的参数。它直接影响电池的工作电压、工作电流、输出能量与功率等,对于一个实用的化学电源,其内阻越小越好。•电池内阻不是常数,在放电过程中由于活性物质的组成、电解液浓度和温度的变化以及放电时间而变化。电池内阻包括欧姆内阻和电极在电化学反应时所表现出的极化内阻,两者之和称为电池的全内阻。•欧姆内阻主要由电极材料、电解液、隔膜的内阻及各部分零件的接触电阻组成。•极化内阻是指化学电源的正极与负极在电化学反应进行时由于极化所引起的内阻。它是电化学极化和浓差极化所引起的电阻之和。极化内阻与活性物质的本性、电极的结构、电池的制造工艺有关,尤其与电池的工作条件密切相关,放电电流和温度对其影响很大。(4)能量与能量密度①能量是指电池在一定放电制度下所能释放出的电能,单位常用W·h或kW·h表示。电池的能量分为理论能量和实际能量。②能量密度是指单位质量或单位体积的电池所能输出的能量,相应地称为质量能量密度(W·h/kg)或体积能量密度(W·h/L),也称为质量比能量或体积比能量。在电动汽车应用方面,电池的质量比能量影响电动汽车的整车质量和续驶里程,而体积比能量影响到电池的布置空间。(5)功率与功率密度①功率是指在一定的放电制度下,单位时间内电池输出的能量,单位为W或kW。②功率密度又称比功率,是单位质量或单位体积电池输出的功率,单位为W/kg或W/L。比功率是评价电池及电池包是否满足电动汽车加速和爬坡能力的重要指标。(6)荷电状态荷电状态(StateofCharge,SOC)描述了电池的剩余电量,其值为电池在一定放电倍率下,剩余电量与相同条件下额定容量的比值。荷电状态值是个相对量,一般用百分比的方式来表示,SOC的取值为:0≤SOC≤100%。(7)放电深度放电深度(DepthofDischarge,DOD)是放电容量与额定容量之比的百分数,与SOC之间存在如下数学计算关系:(8)循环使用寿命(Cycle循环使用寿命是指以电池充电和放电一次为一个循环,按一定测试标准,当电池容量降到某一规定值(一般规定为额定值的80%)以前,电池经历的充放电循环总次数。循环使用寿命是评价电池寿命性能的一项重要指标。(9)自放电率自放电率是指电池在存放时间内,在没有负荷的条件下自身放电,使得电池的容量损失的速度,用单位时间(月或年)内电池容量下降的百分数来表示。(10)输出效率电池实际上是一个能量存储器,充电时把电能转变为化学能储存起来,放电时再把化学能转变为电能释放出来,供用电装置使用。电池的输出效率通常用容量效率和能量效率来表示。电池的容量效率指电池放电时输出的容量与充电时输入的容量之比,电池的能量效率指电池放电时输出的能量与充电时输入的能量之比。通常,电池的能量效率为55~75%,容量效率为65~90%。对电动汽车而言,能量效率是比容量效率更重要的一个评价指标。(11)抗滥用能力指电池对短路、过充、过放、机械振动、撞击、挤压以及遭受高温和着火等非正常使用情况的容忍程度。(12)成本电池的成本与电池的技术含量、材料、制作方法和生产规模有关,目前新开发的高比能量、高比功率的电池,如锂离子电池,成本较高,使得电动汽车的造价也较高。开发和研制高效、低成本的电池是电动汽车发展的关键。(13)放电制度放电制度是电池放电时所规定的各种条件,主要包括放电速率(电流)、终止电压和温度等。①放电电流:放电电流是指电池放电时电流的大小。放电电流的大小直接影响电池的各项性能指标,因此,介绍电池的容量或能量时,必须说明放电电流的大小,指出放电的条件。放电电流通常用放电率表示,放电率是指电池放电时的速率,有时率或倍率两种表示形式。②放电终止电压:电池放电时,电压下降到不宜再继续放电的最低工作电压称为终止电压,其值与电池材料直接相关,并受到电池结构、放电率、环境温度等多种因素影响。4.1.3动力电池分类(1)按电解液种类分类(2)按工作性质和储存方式分类(3)按电池所用正、负极材料分类(1)按电解液种类分类①碱性电池:电解质主要以氢氧化钾水溶液为主的电池,如碱性锌锰电池(俗称碱锰电池或碱性电池)、镉镍电池、氢镍电池等。②酸性电池:主要以硫酸水溶液为介质的电池,如铅酸电池。③中性电池:以盐溶液为介质的电池,如锌锰干电池、海水激活电池等。④有机电解液电池:主要以有机溶液为介质的电池,如锂离子电池等。(2)按工作性质和储存方式分类①一次电池,又称原电池,即不能再充电使用的电池,如锌锰干电池、锂原电池等。②二次电池,即可充电电池,如铅酸电池、镍镉电池、镍氢电池、锂离子电池等。③燃料电池,活性材料在电池工作时才连续不断地从外部加入电池,如氢氧燃料电池、金属燃料电池等。④储备电池,储备电池储存时电极板不直接接触电解液,直到电池使用时,才加入电解液,如镁-氯化银电池,又称海水激活电池。(3)按电池所用正、负极材料分类①锌系列电池,如锌锰电池、锌银电池等。②镍系列电池,如镍镉电池、镍氢电池等。②铅系列电池,如铅酸电池。④锂系列电池,如锂离子电池、锂聚合物电池和锂硫电池。⑤二氧化锰系列电池,如锌锰电池、碱锰电池等。⑥空气(氧气)系列电池,如锌空气电池、铝空气电池等。动力电池分类图4-2电动汽车用动力电池分类4.2锂离子动力电池4.2.1概述4.2.2锂离子动力电池的工作原理4.2.3锂离子动力电池的失效机理4.2.4锂离子动力电池的性能4.2.5锂离子动力电池的应用4.2.1概述锂离子电池根据正极材料的不同,分为钴酸锂锂离子电池、锰酸锂锂离子电池、磷酸铁锂锂离子电池和三元材料锂离子电池等;根据所用电解质材料不同,分为液态锂离子电池(Lithium-IonBattery,LIB)和聚合物锂离子电池(PolymerLithium-IonBattery,LIP)两大类。相对于其他类型电池,锂离子电池具有以下显著的优点:(1)工作电压高(2)比能量高(3)循环寿命长(4)自放电小(5)无记忆效应(6)环保性高(1)工作电压高钴酸锂锂离子电池的工作电压为3.6V,锰酸锂锂离子电池的工作电压为3.7V,磷酸铁锂锂离子电池的工作电压为3.2V,而镍氢、镍镉电池的工作电压仅为1.2V。(2)比能量高锂离子电池正极材料的理论比能量可达200以上,实际应用中由于不可逆容量损失,比能量通常低于这个数值,但也可达140,该数值仍为镍镉电池的3倍,镍氢电池的1.5倍。(3)循环寿命长目前,锂离子电池在深度放电情况下,循环次数可达1000次以上;在低放电深度条件下,循环次数可达上万次,其性能远远优于其他同类电池。(4)自放电小锂离子电池月自放电率仅为总电容量的5~9%,大大缓解了传统的二次电池放置时由自放电所引起的电能损失问题。(5)无记忆效应无记忆效应(6)环保性高相对于传统的铅酸电池、镍镉电池甚至镍氢电池废弃可能造成的环境污染问题,锂离子电池中不包含汞、铅、镉等有害元素,是真正意义上的绿色电池。4.2.2锂离子动力电池的工作原理图4-3锂离子电池的工作原理4.2.3锂离子动力电池的失效机理造成锂离子电池容量衰退的原因主要有:(1)正极材料的溶解(2)正极材料的相变化(3)电解液的分解(4)过充电造成的容量损失(5)自放电(6)SEI界面膜的形成(7)集流体的腐蚀(1)正极材料的溶解以尖晶石为例,Mn的溶解是引起可逆容量衰减的主要原因。Mn的溶解沉积造成正极活性物质减少;溶解的Mn游离到负极时会造成负极SEI(SolidElectrolyteInterface,SEI)膜的不稳定,被破坏的SEI膜再形成时会消耗锂离子,造成锂离子的减少。Mn的溶解是尖晶石锂离子电池容量衰减的重要原因,在这一点学界已经基本达成共识,但是对于Mn的溶解机理却存在多种不同的解释。(2)正极材料的相变化一般认为,锂离子的正常脱嵌反应总是伴随着宿主结构摩尔体积的变化,引起结构的膨胀与收缩,导致氧八面体偏离球对称性并成为变形的八面体构型。这种现象叫做Jahn-Teller效应(或J-T扭曲)。在电池中,J-T效应所导致的尖晶石结构不可逆转变,也是容量衰减的主要原因之一。J-T效应多发生在过放电阶段;在起始材料中加入过量的锂、掺杂Ni、Co、Al等阳离子或者S等阴离子可以有效的抑制J-T效应。(3)电解液的分解锂离子电池中常用的电解液主要包括由各种有机碳酸酯(如PC、EC、DMC、DEC等)的混合物组成的溶剂以及由锂盐(如、、等)组成的电解质。在充电的条件下,电解液对含碳电极具有不稳定性,故会发生还原反应。电解液还原消耗了电解质及其溶剂,对电池容量及循环寿命产生不良影响。(4)过充电造成的容量损失电池在过充电时,会造成负极锂的沉积、电解液的氧化以及正极氧的损失。这些副反应或者消耗了活性物质,或者产生不溶物质堵塞电极孔隙,或者正极氧损失导致高电压区的J-T效应,这些都会导致电池容量衰减。(5)自放电锂离子电池的自放电所导致的容量损失大部分是可逆的,只有一小部分是不可逆的。造成不可逆自放电的原因主要有:锂离子的损失(形成不可溶的等物质),电解液氧化产物堵塞电极微孔,造成内阻增大等。(6)SEI界面膜的形成因界面膜的形成而损失的锂离