2011年江苏省泰州市中考数学试题(解析版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

泰州市2011年中考数学试题(考试时间:120分钟满分:150分)请注意:1、本试卷分选择题和非选择题两部分。2、所有试题的答案均填写在答题卡上,答案写在试卷上无效。3、作图必须用2B铅笔作图,并请加黑加粗描写清楚。第一部分选择题(共24分)一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应的位置上)1.21的相反数是()A.21B.21C.2D.2【答案】B.【考点】相反数。【分析】利用相反数的定义,直接得出结果。2.计算322aa的结果是()A.52aB.62aC.54aD.64a【答案】A.【考点】指数运算法则。【分析】53232222aaaa3.一元二次方程xx22的根是()A.2xB.0xC.2,021xxD.2,021xx【答案】c.【考点】一元二次方程。【分析】利用一元二次方程求解方法,直接得出结果0222xxxx2,021xx。4.右图是一个几何体的三视图,则这个几何体是()A.圆锥B.圆柱C.长方体D.球体【答案】A.【考点】图形的三视图。【分析】从基本图形的三视图可得。5.某公司计划新建一个容积V(m3)一定的长方体污水处理池,池的底面积S(m2)与其深度h(m)之间的函数关系式为)0(hhVS,这个函数的图象大致是()【答案】CShODShOAShOBShOC【考点】反比例函数的图像。【分析】利用反比例函数的图像特征,直接得出结果。6.为了了解某市八年级学生的肺活量,从中抽样调查了500名学生的肺活量,这项调查中的样本是()A.某市八年级学生的肺活量B.从中抽取的500名学生的肺活量C.从中抽取的500名学生D.500【答案】B.【考点】样本的概念。【分析】某市八年级学生的肺活量是总体,从中抽取的500名学生的肺活量是样本,500是样本的容量.7.四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC。其中一定能判断这个四边形是平行四边形的条件共有()A.1组B.2组C.3组D.4组【答案】C.【考点】平行四边形的判定。【分析】根据平行四边形的定义和判定定理,①②③是平行四边形的条件,④不一定.8.如图,直角三角形纸片ABC的∠C为90°,将三角形纸片沿着图示的中位线DE剪开,然后把剪开的两部分重新拼接成不重叠的图形,下列选项中不能拼出的图形是()A.平行四边形B.矩形C.等腰梯形D.直角梯形【答案】D.【考点】图形的拼接。【分析】把DA拼接DC可得平行四边形,把AE拼接EB可得矩形,把AD拼接DC可得等腰梯形.第二部分非选择题(共126分)二、填空题(本大题共有10小题,每小题3分,共30分,请把答案直接写在答题卡相应的位置上)9.16的算术平方根是。【答案】4.【考点】算术平方根。【分析】利用算术平方根的定义,直接得出结果。10.分解因式:aa422。【答案】22aa【考点】因式分解。【分析】利用提取公因式,直接得出结果。11.不等式512>x的解集是。【答案】3>x.【考点】不等式。【分析】512>x62>x3>x。12.多项式与22mm的和是mm22。【答案】23m【考点】代数式运算。【分析】mm2222mm23m。13.点)2,3(P关于x轴对称的点P的坐标是。【答案】23,【考点】轴对称。【分析】利用轴对称,直接得出结果。14.甲、乙两位同学参加跳远训练,在相同条件下各跳了6次,统计平均数乙甲xx,方差22乙甲<SS,则成绩较稳定的同学是(填“甲”或“乙”)。【答案】甲.【考点】方差。【分析】利用方差概念,直接得出结论。15.如图,直线a、b被直线l所截,a∥b,∠1=70°,则∠2=。【答案】1100【考点】平行线的性质。【分析】002=180-1=11016.如图,△ABC的3个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC绕点B顺时针旋转到△CBA的位置,且点A、C仍落在格点上,则线段AB扫过的图形面积是平方单位(结果保留π)。【答案】134.【考点】勾股定理,扇形面积,图形的旋转。【分析】222313AB,2'9013133604AABS17.“一根弹簧原长10cm,在弹性限度内最多可挂质量为5kg的物体,挂上物体后弹簧伸长的长度与所挂物体的质量成正比,,则弹簧的总长度y(cm)与所挂物体质量x(kg)之间的函数关系式为y=10+0.5x(0≤x≤5)。”王刚同学在阅读上面材料时发现部分内容被墨迹污染,被污染的部分是确定函数关系式的一个条件,你认为该条件可以是:(只需写出1个)。【答案】物体的质量每增加1kg弹簧伸长2cm。【考点】函数关系式。【分析】根据函数关系式为y=10+0.5x进行解读得出结果。18.如图,平面内4条直线l1、l2、l3、l4是一组平行线,相邻2条平行线的距离都是1个单位长度,正方形ABCD的4个顶点A、B、C、D都在这些平行线上,其中点A、C分别在直线l1、l4上,该正方形的面积是平方单位。【答案】5.【考点】勾股定理,正方形面积。【分析】A点在l1定下后,B点由A点向下平移2个单位到l2后向左平移1个单位得到;C点由B点向下平移1个单位到l4后向右平移2个单位得到;D点由C点向上平移1个单位到l3后向左平移2个单位得到。这时得到的四边形ABCD是边长为5个单位长度的正方形,该正方形的边长是22125,l1l2l3l4ADBC面积是5平方单位。(如图)三、解答题(本大题共有10小题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(本题满分8分)计算或化简:(1)60sin232)1(0,【答案】解:0031232sin60=1232=12【考点】绝对值,零次幂,特殊角的三角函数。【分析】利用绝对值,零次幂的定义和特殊角的三角函数,直接得出结果。(2)abababba)(2。【答案】解:22==babaababaabaaba【考点】分式运算法则,平方差公式。【分析】利用分式运算法则,平方差公式,直接得出结果。20.(本题满分8分)解方程组8361063yxyx,并求xy的值。【答案】解:36=10xy①63=8xy②①×2-②得:49=12=3yy,,代入①得:238=10=3xx,242==2333xy【考点】二元一次方程组,二次根式。【分析】利用二元一次方程组求解方法,直接得出方程组的解,再代入xy化简二次根式。21.(本题满分8分)一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外其余都相同,搅匀后从中任意摸出1个球,记录下颜色后放回袋中并搅匀,再从中任意摸出1个球。请用画树状图的方法列出所有可能的结果,并写出两次摸出的球颜色相同的概率。【答案】解:画树状图开始第1次白球1白球2红球第2次白球1白球2红球白球1白球2红球白球1白球2红球两次摸出的球颜色相同的概率为59。【考点】概率。【分析】列举出所有情况,求出概率.22.(本题满分8分)某文具商店共有单价分别为10元、15元和20元的3种文具盒出售,该商店统计了2011年3月份这3种文具盒的销售情况,并绘制统计图如下:(第22题图)20元15元10元单价100200300400个数文具商店2011年3月份3种文具盒销售情况条形统计图文具商店2011年3月份3种文具盒销售情况扇形统计图20元15%15元10元25%(1)请在图②中把条形统计图补充完整.(2)小亮认为:该商店3月份这3种文具盒总的平均销售价格为1101520153(元),你认为小亮的计算方法正确吗?如不正确,请计算出总的平均销售价格.【答案】解:(1)90÷15%×25%=150如图:(2)小亮的计算方法不正确正确计算为:20×15%+10×25%+15×60%=14.5【考点】统计图表分析。【分析】统计图表的分析。23.(本题满分10分)一幢房屋的侧面外墙壁的形状如图所示,它由等腰三角形OCD和矩形ABCD组成,∠OCD=25°,外墙壁上用涂料涂成颜色相同的条纹,其中一块的形状是四边形EFGH,测得FG∥EH,GH=2.6m,∠FGB=65°。(1)求证:GF⊥OC;(2)求EF的长(结果精确到0.1m)。(参考数据:sin25°=cos65°≈0.42,cos25°=sin65°≈0.91)【答案】解:(1)在四边形BCFG中,∠GFC=360°-90°-65°-(90°+25°)=90°则GF⊥OC(2)如图,作FM∥GH交EH与M,则有平行四边形FGHM,∴FM=GH=2.6m,∠EFM=25°∵FG∥EH,GF⊥OC(第23题图)65°HBCDOAFGE∴EH⊥OC在Rt△EFM中:EF=FM·cos25°≈2.6×0.91=2.4m【考点】多边形内角和定理,平行四边形,解直角三角形。【分析】(1)欲证GF⊥OC,只要证90°,在四边形BCFG中应用四边形内角和是360°,即可证得。(2)欲求EF的长,就要把它放到一个三角形中,作FM∥GH交EH与M,易证EH⊥OC,解Rt△EFM可得。24.(本题满分10分)如图,四边形ABCD是矩形,直线l垂直平分线段AC,垂足为O,直线l分别与线段AD、CB的延长线交于点E、F。(1)△ABC与△FOA相似吗?为什么?(2)试判定四边形AFCE的形状,并说明理由。【答案】解:(1)△ABC∽△FOA,理由如下:在矩形ABCD中:∠BAC+∠BCA=90°∵直线l垂直平分线段AC,∴∠OFC+∠BCA=90°∴∠BAC=∠OFC=∠OFA又∵∠ABC=∠FOC=90°,∴△ABC∽△FOA(2)四边形AFCE为菱形,理由如下:∵AE∥FC,∴△AOE∽△COF则OE:OF=OA:OC=1:1,∴OE=OF∴AC与EF互相垂直平分则四边形AFCE为菱形。【考点】矩形,相似三角形,平行线,菱形。【分析】(1)△ABC和△FOA易证都是直角三角形,只要再证其一组对角相等,而∠BAC和∠OFC=∠OFA都与∠BCA互余,从而得证。(2)要证四边形AFCE为菱形,已知直线l垂直平分线段AC,只要再证其互相平分,由△AOE∽△COF可证OE=OF,从而得证。25.(本题满分10分)小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过tmin时,小明与家之间的距离为s1m,小明爸爸与家之间的距离为s2m,图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象。(1)求s2与t之间的函数关系式;(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?【答案】解:(1)t=2400÷96=25设s2=kt+b,将(0,2400)和(25,0)代入得:0252400bkb解得:240096bk∴s2=-96t+2400(2)由题意得D为(22,0)设直线BD的函数关系式为:s=mt+ns(m)AODCBt(min)24001012Fl(第24题图)EFOCDAB得:022240012nmnm解得:5280240nm∴s=-240t+5280由-96t+2400=-240t+5280解得:t=20当t=20时,s=480答:小明从家出发,经过20min在返回途中追上爸爸,这时他们距离家还有480m。【考点】待定系数法,,二元一次方程组.【分析】根据题意,利用代定系数法求解二元一次方程组即可.26.(本题满分10分)如图,以点O为圆心的两个同心圆

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功