水体富营养化与污水脱氮除磷技术的探讨摘要:水体富营养化是水体污染的一种表现形式,其发生原因是水体中氮磷等营养元素含量过多,会引起水质恶化、水体功能降低以及水生生物死亡等严重后果,甚至会对人体健康与生存造成威胁。本文就对水体富营养化进行概述,并探讨了污水脱氮除磷技术,以有效抑制水体富营养化趋势,保护水资源环境。关键词:水体富营养化;污水脱氮除磷技术;探讨近些年来,随着我国城市化进程的不断加快,城市人口数量持续增加,城市污水总量也日益增多。在城市污水当中,人们排放的生活污水和工业废水中都含量大量的氮磷等营养物质,在水体中不断堆积,直到超出水体本身的自净能力,就会造成水体的富营养化,引起一系列的危害。因此,加强对水体富营养化的研究,采取合适的污水脱氮除磷技术,预防水体富营养发生,有着重要的现实意义。一、水体富营养化的概述(一)水体富营养化的概念水体富营养化是指人们生产活动所排出的污水当中,含有大量生物成长所需的氮磷等物质,这些物质随污水进入到河流、湖泊和海湾之后,由于营养物质充足,会造成藻类及浮游生物大量繁殖,降低水体的溶解氧气含量,引起水质恶化,造成大量鱼类死亡。(二)水体富营养化的成因水体富营养化的直接原因就是水体中氮、磷等营养物质含量过多造成的,从氮、磷营养物质的来源来看,主要由城市生活污水、农业废弃水本身含有的,以及农田施肥后雨水冲刷带走的。通常来说,水体富营养化的氮、磷指标分别为0.3mg/L和0.02mg/L[1]。(三)水体富营养化的危害在发生水体富营养化后,藻类、其它浮游生物会在短时间内大量繁殖,遍布在水面上,呈现出浮游生物的颜色,比如湖泊中的“水化”、“湖靛”和海洋“赤潮”等,都是水体富营养的常见现象。水体富营养的危害是多面性的,具体包括:一是水质恶化,在水体富营养化,藻类生长周期会缩短,藻类与浮游生物死亡后的分解过程中,水中溶解氧会被大量消耗,并产生硫化氢气体,降低水体溶解氧含量,发出臭味,造成水质恶化。二是水体生态环境被破坏,在水体富营养化后,氮磷物质的充足会促进藻类植物的繁殖,其它鱼类等得不到足够的氧气,会出现大面积死亡,同时,氮磷含量超出了水体自净能力极限,难以在短时间内恢复正常,水体生态环境受到严重破坏。三是产生有毒物质,在一些富营养严重的水体中,会含有亚硝酸盐和硝酸盐等有毒物质,加上藻类排放的藻毒素等物质,会增加水体有毒物质浓度,危及人类的健康与安全。二、污水脱氮除磷技术的探讨(一)生物脱氮技术在传统的生物脱氮技术中,其原理是通过异养菌的氨化作用,将污水中的含氮有机物转变为氨氮,然后在硝化细菌的硝化作用下,氨氮又会被转变成亚硝酸盐和硝酸盐,最后通过反硝化作用,将其还原成为NO、N2O和氨气,完成脱氮脱氮过程。传统生物脱氮工艺使用的是三级活性污泥法,在工艺流程中,设计有曝气池、硝化池、多个沉淀池以及反硝化反应器等,各种处理需要的菌类都单独存在于各自的反应器中,具有处理效率快、处理效果较为彻底的优点,但需要多种设备,造价高、管理困难。在近些年来,围绕生物脱氮,为缩短脱氮转换过程,有许多新脱氮技术出现,主要有以下三种:一是短程硝化反硝化技术。此种技术是在1975年由Voets提出的,其基础是硝化反应过程中会有亚硝态氮积累,通过在同一反应器内一直硝化菌生长,将亚硝化菌变为优势菌种,亚硝化菌可以分别在有氧和缺氧条件下,完成氨氧化为亚硝酸盐和亚硝酸盐反硝化生成氨气的过程。此技术的关键在于短程硝化,也就是在好氧条件下积累大量NO2-。二是同步硝化反硝化技术。此技术是指在同一反应器中,同时进行硝化和反硝化反应过程,不需要区分好氧或缺氧条件,完成总氮去除的一种技术。在同步硝化反硝化过程中,硝化反应得到的NO3-直接被应用于反硝化反应当中,反硝化反应的碱度可以对硝化反应耗碱进行补偿,使反应器中酸碱保持在相对稳定状态。当同步硝化反硝化过程中的两个反应达到动态平衡状态时,污水脱氮效率达到最高,水处理成本会有效降低[2]。三是厌氧氨氧化技术。此技术是以厌氧作为基础条件,微生物分别将氨态氮和亚硝态氮作为电子的供体和受体,完成氨态氮、亚硝态氮向氨气转变的过程,是一种生物氧化技术。此技术具有无需外加碳源、酸碱中和剂和供氧的优势,可以降低能耗,避免二次污染,运行成本较低,具有很高的利用价值。以此技术为基础,开发出的生物脱氮新工艺有CANON工艺、SHARON-ANNMMOX工艺以及OLAND工艺等。(二)生物除磷技术生物除磷技术主要有传统生物除磷和反硝化生物除磷两种,其中,传统生物除磷技术是在厌氧环境中,通过聚磷菌对糖原进行消耗,迫使胞内聚合磷发生水解,产生正磷酸盐并向胞外释放,然后被胞外环境中的挥发性脂肪酸、醋酸盐等吸收,形成生物聚合物(PHB),被细胞贮存起来。然后,厌氧环境时,合成PHB的过程会同时发生正磷酸盐的释放,好氧环境下,PHB会在磷酸菌作用下氧化,形成聚磷酸高能键,并被贮存起来。传统生物除磷常用的技术有A/O法、氧化沟法以及SBR法等。反硝化生物除磷技术的原理基本类似于传统除磷,不同点在于使用的优势菌种是反硝化除磷菌,此菌可以将NO3-作为电子受体,完成吸磷过程,形成聚合磷酸盐,被细胞贮存起来,NO3-被同时还原呈氮气。反硝化生物除磷常用的技术有BCFS工艺、A2N/SBR工艺等,其优点主要是解决脱氮、除磷存在的矛盾,可以实现脱氮、除磷的同步进行。(三)其它除磷技术其它除磷技术主要是以化学反应为基础,并综合其它工艺,得到一些起到除磷作用的工艺。其中,化学除磷技术主要有离子交换、结晶、吸附和化学凝聚沉淀法,结晶法应用作为广泛,具有效率高、无二次污染、磷资源回收利用等优势,主要应用于高含量的磷酸盐污水中。其它除磷的组合工艺还有人工湿地除磷、超声波强化生物除磷以及生物化学除磷等。(四)同步脱氮除磷技术同步脱氮除磷技术是以生物脱氮、除磷为基础发展形成的工艺,常见的有A2/O法、倒置A2/O法和巴颠甫以及生物转盘同步脱氮除磷技术等。其中,应用最为广泛的是A2/O法同步脱氮除磷工艺,其是以An-O脱氮为基础,是一种最为简单的同步脱氮除磷技术,在整个脱氮除磷过程中,水体停留时间比其它工艺都短,污泥膨胀问题不容易发生,SVI值通常不超过100,处理得到的污泥中含有高浓度磷,可以作为磷肥回收利用,且不需外加药物,只需要在两个A段轻缓搅拌即可,处理成本较低[3]。在氮磷的同步去除工艺中,由于硝化、反硝化、释磷和吸磷生化反应环节较多,各个环节对环境、微生物和基质的需求各不相同,在同步脱氮除磷过程中,经常会发生反应过程的冲突,增加同步脱氮除磷的难度。因此,在生物同步脱氮除磷中,最关键的就是为微生物提供合适环境,并避免彼此的冲突和竞争,发挥最大的脱氮除磷作用,实现高效率的脱氮除磷目标。结语:综上所述,在近些年来,水体富营养化情况越来越加严重,是一个世界性难题,得到各个国家的广泛重视。水体富营养化的主要营养物质是氮、磷,加强对脱氮除磷技术的研究,开发高效率的脱氮除磷工艺,对水体富营养化问题的解决和预防有着重要意义。参考文献:[1]刘静宇,夏宏彩.水体富营养化及污水脱氮除磷技术分析[J].技术与市场,2015,08:216.[2]王亚宜.浅议水体富营养化及污水生物脱氮除磷技术原理[J].世界科学,2012,05:46-48.[3]崔晨,王伯铎,张秋菊,郭娜.污水生物脱氮除磷新工艺的研究[J].地下水,2011,02:59-62.