-1-《金融统计分析》实验报告题目基于万科A股线性时间序列分析与GARCH模型分析姓名唐小勇班级11301020402学号11301040208-2-《金融统计分析》实验报告参考标准及得分序号指标分值得分1选题有现实意义,且能体现金融与统计的结合102综合应用数据处理技术解决金融问题的能力,熟练操作统计软件R的能力503与学分相适应的工作量和难度,有一定的创新,结论明确204报告撰写质量:图标美观,参考文献,格式合适等20实验报告成绩任课教师签名-3-实验一实验内容:基于万科A股线性时间序列分析实验结果:arma模型对数据的动态线性相依性的建模是充分的实验过程:万科企业股份有限公司成立于1984年5月,是目前中国最大的专业住宅开发企业,也是股市里的代表性地产蓝筹股。我们可以对其收盘价指数作出分析。首先从resset数据库中下载了万科A股(000002)的日收盘价(2000/1/1至2016/1/1)。共计3543个观测值。利用R软件作出其日收盘价时序图(图表1)。(图表1万科A股在2000/1/1到2016/1/1期间的日收盘价)由图表1可见,在2000/1/1到2016/1/1期间的日收盘价有明显的涨跌趋势。其中2006年到2008年的涨幅和跌幅幅度最大,而在2015年之后也有持续增幅的趋势。故我们先可认为其收盘指数不稳定。进一步作出日收盘指数取对数,并进行一阶差分,得到2000/1/1到2016/1/1期间万科A股日收盘指数收益的时序图(图表2)。-4-(图表2万科A股在2000/1/1到2016/1/1期间的日对数收益率)由图表2可以观察到,万科A股的日对数收益率在0值周围波动,除了几个少数几个值波动比较大外,其他的都在一个固定的范围内波动,即在方差2范围波动。我们可以简单认为其为平稳序列。先对其进行单位根检验,如图:图表3单位根检验取日收益率的对数,对该对数序列进行扩展的Dickey-Fuller单位跟检验,我们选择p=10,ADF检验统计量是-9.09,p值是0.01,所以可以得到的结论是拒绝原假设,说明该序列是个平稳性序列。-5-(图表4一阶差分序列的时序图)下图为该样本数据的偏自相关函数图,由图可以看出该样本数据的PACF在第6个点才看起来是显著的,是拖尾的,更后面的也有但是在这里我们不考虑。(图表5差分序列的样本PACF)AR(P)模型建立与分析AR(P)模型的定阶方式有两种,第一种方法利用偏字相关PACF函数,第二种用某个信息准则函数AIC。观察样本偏自相关函数,我们发现在5%显著性水平条件下,3、4、6、7、11、12阶数显著。进一步我们利用信息准则AIC来判定阶数。-6-(图6上证指数日指数收益率AIC滞后12阶)AIC信息准则为序列识别出了一个AR(12)模型,但同时也说明AR(6)模型也存在一定的合理性,图五表明,如果着重于低阶的模型,AIC会识别AR(6)模型,注意:在R语言中的AR命令已经对AIC准则值进行了调整,使得AIC的最小值为0。运用R语言进行拟合AR(6)模型,结果如图六:(图7上证指数日指数收益率AR(6)拟合模型各参数估计值)拟合的模型为:t654321ta057.00272.00485.00615.0017.00117.0ttttttxxxxxxX模型的各参数的标准误差都为0.132,在显著性5%水平下,根据2倍标准差原则滞后1,2阶系数显著为0,故修改后的拟合模型为:t6543ta0561.00287.00495.00618.0ttttxxxxX我们必须仔细检查拟合模型以防止可能存在的模型的非充分性。如果模型是充分的,那么它的残差序列应为白噪声,我们运用Ljung-Box统计量对残差序列进行检验,滞后12阶,结果如图七:-7-(图8上证指数日指数收益率AR(6)拟合模型残差序列Box检验)其中Q(12)=32.768,并且基于它的渐进分部的自由度为9的卡方分布,得到的p值为0.00001在5%的置信水平下,前拒绝原假设,则残差序列的前12个系数无相关性被拒绝,也就是说残差序列为非白噪声,同时在Q(12)=32.768,其中p值为0.000146(基于210分布),该模型对数据的动态线性相依性的建模是非充分的。MA(q)模型建立与分析建立的AR(p)模型不充分,我们考虑建立MA(q)模型,我们知道自相关函数ACF是识别一个MA模型阶数的有用工具,对于具有自相关函数t的时间序列X,若0t但对0t,ll有,则X服从一个MA(q)模型。通过观察该序列的自相关函数,我们首先q=4,建立一个MA(4)的模型。(图9上证指数日指数收益率MA(4)拟合模型各参数估计值)模型的表达式为:4321t0516.00632.0a0179.0a082.0ttttxxX00049.02a模型的各参数的标准误差都为0.133,在显著性5%水平下,根据2倍标准差原则滞后1,2阶系数显著为0,故修改后的拟合模型为:-8-43t0496.00646.0ttxxX00049.02a我们必须仔细检查拟合模型以防止可能存在的模型的非充分性。如果模型是充分的,那么它的残差序列应为白噪声,我们运用Ljung-Box统计量对残差序列进行检验,滞后12阶,结果表示残差序列为非白噪声,同样在5%的显著性水平下模型非充分。ARMA(p,q)模型建立与分析对MA模型,ACF对模型定阶是有用的,因为MA(q)序列的ACF是q步截尾的,对AR模型,PACF对模型定阶是有用的,因为AR(P)序列的PACF是P步截尾的。其实我们观察1992年01月01日到2016年04月11日上证指数日指数收益率的样本自相关函数与偏自相关函数,发现ACF与PACF都是明显拖尾的,并非截尾,所以无论建立AR(P)或者MA(q)都应该是非充分的,上述AR(6)与MA(4)两模型建立验证了结论,接下来我们建立ARMA(p,q)模型,我们知道在给ARMA(p,q)模型定阶时,ACF和PACF都不能提供足够的信息,我们可以利用推广的自相关函数来(EACF)确定ARMA过程的阶。(图10上证指数日指数收益率ARMA(P,Q)拟合模型EACF图)EACF表明上证指数日收盘指数的收益率服从一个ARMA(0,0)模型(也就是一个白噪声序列)。这与图四中上证指数日收益率的样本自相关表明的结果一致。前面我们所讨论的信息准则同样适用于来选择ARMA模型,具体来说,我们县给定指定的整数P和Q计算ARMA(p,q)模型的AIC,选择使得AIC取最小的值得模型。首先取p=6,q=4,建立ARMA(6,4)模型,并且同时拟合l不同p,q值的ARMA模型。其中发现建立ARMA(6,4)模型的AIC的值最小。-9-(图11上证指数日指数收益率ARMA(6,4)拟合模型各参数的估计值)拟合的模型为:taXBBB)()(41t621.....1......-1我们必须仔细检查拟合模型以防止可能存在的模型的非充分性。如果模型是充分的,那么它的残差序列应为白噪声,我们运用Ljung-Box统计量对残差序列进行检验,滞后12阶,结果如图十一:(图12上证指数日指数收益率ARMA(6,4)拟合模型残差序列Box检验)其中Q(12)=15.905,并且基于它的渐进分部的自由度为8的卡方分布,得到的p值为0.1956,在5%的置信水平下,不前拒绝原假设,则残差序列的前12个系数无相关性不能拒绝,也就是说残差序列为白噪声,同时在Q(12)=15.905,其中p值为0.0437(基于28分布),在1%的显著性水平检验水平下,该模型对数据的动态线性相依性的建模是充分的。-10-实验二实验内容:基于万科A股GARCH模型分析实验结果:ttar26252423222120516.01443.01062.00846.02074.00629.00002.0tttttttaaaaaa实验过程:这是万科A股(000002)的日收盘价(2000/1/1至2016/1/1)。共计3543个观测值。取它们的对数。对数收益率中有显著的序列相关性,通过自相关系数和5%的显著性水平解答样本的ACF值只有6阶的在两倍标准差之外,是显著的,其余的都在两倍标准差之内不显著,对于对数收益率,Ljung-Box统计量为Q(9)=18.092,对应的P值为0.034,P小于0.05,拒绝原假设,即证实了该股票的对数收益率有显著的序列相关性。由于存在序列相关性,因此需要用残差的平方做关于对数收益率的ARCH效应检验,使用Box-Ljung检验的6个间隔与12个间隔的自相关系数在5%的显著性水平下对残差的平方进行检验,结果如下:-11-序列的Box-Ljung统计量Q(6)=144.62,Q(12)=178.57,P值都十分接近于0,应用拉格朗日乘子法(m=12),我们有F=8.405,相应的P值为1.934-1510,该检验进一步确认了该股票日对数收益率存在很强的ARCH效应。建立GARCH模型:用残差的平方做关于对数收益率的ARCH效应检验图,结果如下图所示:-12-样本中PACF表面GARCH(6,0)模型可能是合适的,因此下面将对该股票的日对数收益率具体建立一个如下形式的模型:ttar26622221102t...tttaaaa程序和结果如下-13-去掉不显著的参数,得到的模型为:ttar26252423222120516.01443.01062.00846.02074.00629.00002.0tttttttaaaaaa其中各参数估计的标准误差分别为0.00002,0.0291,0.0459,0.0366,0.0337,0.0425,0.0231,并且所估计的都是高度显著的,下面三图显示的是标准化的残差的{ta~}的时序图和ACF图及残差平方的样本PACF,ACF图表明标准化残差没有序列相关性,PACF图表明在标准化残差的平方序列的第20阶显著,除此之外都不显著,说明也没有序列相关性。而且标准化残差的平方LB统计量也-14-只有Q(20)=38.8,p值为0.017,可以忽略。那么由上述各种表面GARCH(6,0)模型可以充分的描述该股票数据收益率的日波动率。下图为日对数收益率序列的时序图,两条虚线表示基于高斯新息的GARCH(6,0)模型的95%点预测区间。-15-附录:-16-